Least squares methods in Krylov subspaces
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 131-147 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers iterative algorithms for solving large systems of linear algebraic equations with sparse nonsymmetric matrices based on solution of least squares problems in Krylov subspaces and generalizing the alternating Anderson–Jacobi method. The approaches suggested are compared with the classical Krylov methods, represented by the method of semi-conjugate residuals. The efficiency of parallel implementation and speedup are estimated and illustrated with numerical results obtained for a series of linear systems resulting from discretization of convection-diffusion boundary-value problems.
@article{ZNSL_2016_453_a9,
     author = {V. P. Il'in},
     title = {Least squares methods in {Krylov} subspaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {131--147},
     year = {2016},
     volume = {453},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a9/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - Least squares methods in Krylov subspaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 131
EP  - 147
VL  - 453
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a9/
LA  - ru
ID  - ZNSL_2016_453_a9
ER  - 
%0 Journal Article
%A V. P. Il'in
%T Least squares methods in Krylov subspaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 131-147
%V 453
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a9/
%G ru
%F ZNSL_2016_453_a9
V. P. Il'in. Least squares methods in Krylov subspaces. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 131-147. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a9/