The congruence centralizer of the Sergeichuk--Horn matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 104-113

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a complex $n\times n$ matrix. We call the set of matrices $X$ such that $X^*AX=A$ the congruence centralizer of $A$. This is an analog of the classical centralizer of $A$ in the case where the group $\mathrm{GL}_n(\mathbb C)$ acts on the matrix space $M_n(\mathbb C)$ by congruence rather than similarity. We find the congruence centralizer of the matrix $$ \Delta_n=\left(\begin{array}{cccc} 1\\ \cdots\\ 1\cdots\\ 1 \end{array}\right). $$ This matrix represents one of the three types of building blocks for the canonical form of square complex matrices with respect to congruences found by R. Horn and V. Sergeichuk.
@article{ZNSL_2016_453_a7,
     author = {Kh. D. Ikramov},
     title = {The congruence centralizer of the {Sergeichuk--Horn} matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {104--113},
     publisher = {mathdoc},
     volume = {453},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a7/}
}
TY  - JOUR
AU  - Kh. D. Ikramov
TI  - The congruence centralizer of the Sergeichuk--Horn matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 104
EP  - 113
VL  - 453
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a7/
LA  - ru
ID  - ZNSL_2016_453_a7
ER  - 
%0 Journal Article
%A Kh. D. Ikramov
%T The congruence centralizer of the Sergeichuk--Horn matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 104-113
%V 453
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a7/
%G ru
%F ZNSL_2016_453_a7
Kh. D. Ikramov. The congruence centralizer of the Sergeichuk--Horn matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 104-113. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a7/