The lengths of the quaternion and octotion algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 22-32
Cet article a éte moissonné depuis la source Math-Net.Ru
The classical Gurvitz theorem claims that there are exactly four normed algebras with division: the real numbers $(\mathbb R)$, complex numbers $(\mathbb C)$, quaternions $(\mathbb H)$, and octonions $(\mathbb O)$. The length of $\mathbb R$ as an algebra over itself is zero; the length of $\mathbb C$ as an $\mathbb R$-algebra equals one. The purpose of the present paper is to prove that the lengths of the $\mathbb R$-algebras of quaternions and octonions equal two and three, respectively.
@article{ZNSL_2016_453_a2,
author = {A. E. Guterman and D. K. Kudryavtsev},
title = {The lengths of the quaternion and octotion algebras},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {22--32},
year = {2016},
volume = {453},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a2/}
}
A. E. Guterman; D. K. Kudryavtsev. The lengths of the quaternion and octotion algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 22-32. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a2/