The lengths of the quaternion and octotion algebras
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 22-32 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The classical Gurvitz theorem claims that there are exactly four normed algebras with division: the real numbers $(\mathbb R)$, complex numbers $(\mathbb C)$, quaternions $(\mathbb H)$, and octonions $(\mathbb O)$. The length of $\mathbb R$ as an algebra over itself is zero; the length of $\mathbb C$ as an $\mathbb R$-algebra equals one. The purpose of the present paper is to prove that the lengths of the $\mathbb R$-algebras of quaternions and octonions equal two and three, respectively.
@article{ZNSL_2016_453_a2,
     author = {A. E. Guterman and D. K. Kudryavtsev},
     title = {The lengths of the quaternion and octotion algebras},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--32},
     year = {2016},
     volume = {453},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a2/}
}
TY  - JOUR
AU  - A. E. Guterman
AU  - D. K. Kudryavtsev
TI  - The lengths of the quaternion and octotion algebras
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 22
EP  - 32
VL  - 453
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a2/
LA  - ru
ID  - ZNSL_2016_453_a2
ER  - 
%0 Journal Article
%A A. E. Guterman
%A D. K. Kudryavtsev
%T The lengths of the quaternion and octotion algebras
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 22-32
%V 453
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a2/
%G ru
%F ZNSL_2016_453_a2
A. E. Guterman; D. K. Kudryavtsev. The lengths of the quaternion and octotion algebras. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 22-32. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a2/