@article{ZNSL_2016_453_a14,
author = {O. V. Markova},
title = {Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order~$n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {219--242},
year = {2016},
volume = {453},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a14/}
}
TY - JOUR AU - O. V. Markova TI - Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order $n$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 219 EP - 242 VL - 453 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a14/ LA - ru ID - ZNSL_2016_453_a14 ER -
O. V. Markova. Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order $n$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 219-242. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a14/
[1] R. C. Courter, “The dimension of maximal commutative subalgebras of $K_n$”, Duke Math. J., 32 (1965), 225–232 | DOI | MR | Zbl
[2] M. Gerstenhaber, “On dominance and varieties of commuting matrices”, Annals Math., 73:2 (1961), 324–348 | DOI | MR | Zbl
[3] A. E. Guterman, O. V. Markova, “Commutative matrix subalgebras and length function”, Linear Algebra Appl., 430 (2009), 1790–1805 | DOI | MR | Zbl
[4] N. Jacobson, “Schur's theorems on commutative matrices”, Bull. Amer. Math. Soc., 50 (1944), 431–436 | DOI | MR | Zbl
[5] T. J. Laffey, “The minimal dimension of maximal commutative subalgebras of full matrix algebras”, Linear Algebra Appl., 71 (1985), 199–212 | DOI | MR | Zbl
[6] T. J. Laffey, S. Lazarus, “Two-generated commutative matrix subalgebras”, Linear Algebra Appl., 147 (1991), 249–273 | DOI | MR | Zbl
[7] O. V. Markova, “Kharakterizatsiya kommutativnykh matrichnykh podalgebr maksimalnoi dliny nad proizvolnym polem”, Vestn. Mosk. un-ta. Ser. 1. Matematika. Mekhanika, 2009, no. 5, 53–55 | Zbl
[8] I. A. Pavlov, “O kommutativnykh nilpotentnykh algebrakh matrits”, Dokl. Akad. nauk BSSR, 11:10 (1967), 870–872 | MR | Zbl
[9] A. Paz, “An application of the Cayley–Hamilton theorem to matrix polynomials in several variables”, Linear Multilinear Algebra, 15 (1984), 161–170 | DOI | MR | Zbl
[10] I. Schur, “Zur Theorie der Vertauschbären Matrizen”, J. reine angew. Math., 130 (1905), 66–76 | MR | Zbl
[11] Youngkwon Song, “A construction of maximal commutative subalgebra of matrix algebras”, J. Korean Math. Soc., 40:2 (2003), 241–250 | DOI | MR | Zbl
[12] D. A. Suprunenko, R. I. Tyshkevich, Perestanovochnye matritsy, 2-e izd., URSS, M., 2003