Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order~$n$
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 219-242
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper establishes the existence of an element with nilpotency index $n-1$ in the algebra of upper niltriangular matrices $N_n(\mathbb F)$ over a field $\mathbb F$ with at least $n$ elements for all $n\ge5$ and, as a corollary, also in the full matrix algebra $M_n(\mathbb F)$. This result implies an improvement with respect to the basic field of known classification theorems due to D. A. Suprunenko, R. I. Tyschkevich, and I. A. Pavlov for algebras of the class considered.
@article{ZNSL_2016_453_a14,
author = {O. V. Markova},
title = {Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order~$n$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {219--242},
publisher = {mathdoc},
volume = {453},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a14/}
}
TY - JOUR AU - O. V. Markova TI - Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order~$n$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 219 EP - 242 VL - 453 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a14/ LA - ru ID - ZNSL_2016_453_a14 ER -
O. V. Markova. Commutative nilpotent subalgebras with nilpotency index $n-1$ in the algebra of matrices of order~$n$. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 219-242. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a14/