On functionals dual to minimal splines
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 198-218 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The paper considers minimal splines of Lagrange type of lower orders, and a system of functionals biorthogonal to the system of minimal coordinate splines is constructed. The results obtained are illustrated on the example of a polynomial generating vector function, which leads to the construction of $B$-splines from the approximation relations.
@article{ZNSL_2016_453_a13,
     author = {A. A. Makarov},
     title = {On functionals dual to minimal splines},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {198--218},
     year = {2016},
     volume = {453},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a13/}
}
TY  - JOUR
AU  - A. A. Makarov
TI  - On functionals dual to minimal splines
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 198
EP  - 218
VL  - 453
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a13/
LA  - ru
ID  - ZNSL_2016_453_a13
ER  - 
%0 Journal Article
%A A. A. Makarov
%T On functionals dual to minimal splines
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 198-218
%V 453
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a13/
%G ru
%F ZNSL_2016_453_a13
A. A. Makarov. On functionals dual to minimal splines. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 198-218. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a13/

[1] M. J. Marsden, I. J. Schoenberg, “On variation diminishing spline approximation methods”, Mathematica (Cluj), 8(31):1 (1966), 61–82 | MR | Zbl

[2] C. de Boor, G. J. Fix, “Spline approximation by quasiinterpolants”, J. Approx. Theory, 8:1 (1973), 19–45 | DOI | MR | Zbl

[3] T. Lyche, L. L. Schumaker, “Local spline approximation methods”, J. Approx. Theory, 15:4 (1975), 294–325 | DOI | MR | Zbl

[4] S. B. Stechkin, Yu. N. Subbotin, Splainy v vychislitelnoi matematike, M., 1976

[5] Yu. S. Zavyalov, V. I. Kvasov, B. K. Miroshnichenko, Metody splain-funktsii, M., 1980

[6] L. L. Schumaker, Spline Functions: Basic Theory, John Wiley and Sons, Inc., New York, 1981 | MR | Zbl

[7] Yu. K. Demyanovich, Lokalnaya approksimatsiya na mnogoobrazii i minimalnye splainy, Izd-vo S.-Peterb. un-ta, SPb., 1994

[8] I. G. Burova, Yu. K. Demyanovich, Minimalnye splainy i ikh prilozheniya, Izd-vo S.-Peterb. un-ta, SPb., 2010

[9] Yu. S. Volkov, E. V. Strelkova, V. T. Shevaldin, “Lokalnaya approksimatsiya splainami so smescheniem uzlov”, Matem. tr., 14:2 (2011), 73–82 | MR | Zbl

[10] M. J. Marsden, “An identity for spline functions with applications to variation-diminishing spline approximation”, J. Approx. Theory, 3:1 (1970), 7–49 | DOI | MR | Zbl

[11] Yu. K. Demyanovich, C. Yu. Marakova, “O reshenii nekotorykh interpolyatsionnykh zadach v klassakh minimalnykh splainov”, Chislennyi analiz: teoriya, prilozheniya, programmy, Izd-vo MGU, 1999, 131–153

[12] M. Spivak, Matematicheskii analiz na mnogoobraziyakh, Lan, SPb., 2005

[13] A. A. Makarov, “O postroenii splainov maksimalnoi gladkosti”, Problemy matem. analiza, Mezhvuz. sb., 60, ed. N. N. Uraltseva, Izd-vo T. Rozhkovskaya, Novosibirsk, 2011, 25–38

[14] A. A. Makarov, “Kusochno-nepreryvnye splain-veivlety na neravnomernoi setke”, Tr. SPIIRAN, 14, 2010, 103–131

[15] A. A. Makarov, “Odin variant splain-veivletnogo razlozheniya prostranstv $B$-splainov”, Vestn. S.-Peterb. un-ta. Ser. 10, 2009, no. 2, 59–71

[16] A. A. Makarov, “Biortogonalnye sistemy funktsionalov i matritsy dekompozitsii dlya minimalnykh splainov”, Ukr. mat. visnik, 9:2 (2012), 219–236 | Zbl