New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 148-171
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper introduces new subclasses, called $\mathrm P\mathcal H\mathrm N(\pi)$ and $\mathrm P\mathcal H\mathrm{QN}(\pi)$, of (nonsingular) $\mathcal H$-matrices of order $n$ dependent on a partition $\pi$ of the index set $\{1,\dots,n\}$, which generalize the classes $\mathrm P\mathcal H(\pi)$, introduced previously, and contain, in particular, such subclasses as those of strictly diagonally dominant (SDD), Nekrasov, $S$-SDD, $S$-Nekrasov, $\mathrm{QN}$, and $\mathrm P\mathcal H(\pi)$ matrices. Properties of the matrices introduced are studied, and upper bounds on their inverses in $l_\infty$ norm are obtained. Block generalizations of the classes $\mathrm P\mathcal H\mathrm N(\pi)$ and $\mathrm P\mathcal H\mathrm{QN}(\pi)$ in the sense of Robert are considered.
Also a general approach to defining subclasses $\mathcal K^\pi$ of the class $\mathcal H$ containing a given subclass $\mathcal{K\subset H}$ and dependent on a partition $\pi$ is presented.
@article{ZNSL_2016_453_a10,
author = {L. Yu. Kolotilina},
title = {New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {148--171},
publisher = {mathdoc},
volume = {453},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a10/}
}
TY - JOUR AU - L. Yu. Kolotilina TI - New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 148 EP - 171 VL - 453 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a10/ LA - ru ID - ZNSL_2016_453_a10 ER -
L. Yu. Kolotilina. New subclasses of the class of $\mathcal H$-matrices and related bounds for the inverses. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 148-171. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a10/