Locally strongly primitive semigroups of nonnegative matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of locally strongly primitive semigroups of nonnegative matrices is introduced. It is shown that, by a certain permutation similarity, all the matrices of a semigroup of the class considered can be brought to block monomial form; moreover, any matrix product of sufficient length has positive nonzero blocks only. This shows that the following known property of an imprimitive nonnegative matrix in Frobenius form is inherited. If such a matrix is raised to a sufficiently high power, then all its nonzero blocks are positive. A combinatorial criterion of the locally strong primitivity of a semigroup of nonnegative matrices is found.
@article{ZNSL_2016_453_a0,
     author = {Yu. A. Al'pin and V. S. Al'pina},
     title = {Locally strongly primitive semigroups of nonnegative matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {453},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a0/}
}
TY  - JOUR
AU  - Yu. A. Al'pin
AU  - V. S. Al'pina
TI  - Locally strongly primitive semigroups of nonnegative matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 14
VL  - 453
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a0/
LA  - ru
ID  - ZNSL_2016_453_a0
ER  - 
%0 Journal Article
%A Yu. A. Al'pin
%A V. S. Al'pina
%T Locally strongly primitive semigroups of nonnegative matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-14
%V 453
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a0/
%G ru
%F ZNSL_2016_453_a0
Yu. A. Al'pin; V. S. Al'pina. Locally strongly primitive semigroups of nonnegative matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and algorithms. Part XXIX, Tome 453 (2016), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2016_453_a0/