Formal modules for relative Lubin–Tate formal groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 177-194 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We study relative Lubin–Tate formal groups: their structure, the ring of endomorphisms and the group of points. We consider the primary elements and derive an explicit formula for the generalized Hilbert symbol.
@article{ZNSL_2016_452_a8,
     author = {A. I. Madunts},
     title = {Formal modules for relative {Lubin{\textendash}Tate} formal groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {177--194},
     year = {2016},
     volume = {452},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a8/}
}
TY  - JOUR
AU  - A. I. Madunts
TI  - Formal modules for relative Lubin–Tate formal groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 177
EP  - 194
VL  - 452
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a8/
LA  - ru
ID  - ZNSL_2016_452_a8
ER  - 
%0 Journal Article
%A A. I. Madunts
%T Formal modules for relative Lubin–Tate formal groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 177-194
%V 452
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a8/
%G ru
%F ZNSL_2016_452_a8
A. I. Madunts. Formal modules for relative Lubin–Tate formal groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 177-194. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a8/

[1] M. Hazewinkel, Formal groups and applications, Academic press, NY, 1978 | MR | Zbl

[2] J. Lubin, J. Tate, “Formal complex multiplication in local fields”, Ann. Math. (2), 81:2 (1985), 380–387 | DOI | MR

[3] E. de Shalite, “Relative Lubin–Tate groups”, Proc. Amer. Math. Soc., 95:1 (1985), 1–4 | DOI | MR

[4] S. V. Vostokov, “Normennoe sparivanie v formalnykh modulyakh”, Izv. AN SSSR, ser. mat., 45:5 (1981), 985–1014 | MR | Zbl

[5] S. V. Vostokov, “Simvol Gilberta dlya formalnykh grupp Lyubina–Teita. I”, Zap. nauchn. sem. LOMI, 114, 1982, 77–95 | MR | Zbl

[6] S. V. Vostokov, O. V. Demchenko, “Yavnaya forma sparivaniya Gilberta dlya otnositelnykh formalnykh grupp Lyubina–Teita”, Zap. nauchn. sem. POMI, 227, 1995, 41–44 | MR | Zbl

[7] S. V. Vostokov, I. B. Fesenko, “Simvol Gilberta dlya formalnykh grupp Lyubina–Teita. II”, Zap. nauchn. sem. LOMI, 132, 1983, 85–96 | MR

[8] S. V. Vostokov, “Simvoly na formalnykh gruppakh”, Izv. AN SSSR, ser. mat., 45:5 (1981), 985–1014 | MR | Zbl

[9] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR, ser. mat., 42:6 (1978), 1288–1321 | MR | Zbl

[10] K. Ivasava, Lokalnaya teoriya polei klassov, Mir, M., 1983

[11] A. I. Madunts, “O skhodimosti ryadov nad lokalnymi polyami”, Trudy S.-P. mat. obsch., 3, 1994, 283–320 | MR

[12] A. I. Madunts, Skhodimost posledovatelnostei i ryadov v mnogomernykh polnykh polyakh, Avtoreferat diss. na soiskanie uchenoi stepeni kand. fiz.-mat. nauk, S.-P., 1995, 14 pp.

[13] A. I. Madunts, “Formalnye gruppy Lyubina–Teita nad koltsom tselykh mnogomernogo lokalnogo polya”, Zap. nauchn. sem. POMI, 281, 2001, 221–226 | MR | Zbl

[14] A. I. Madunts, R. P. Vostokova, “Formalnye moduli dlya obobschennykh grupp Lyubina–Teita”, Zap. nauchn. sem. POMI, 435, 2015, 95–112

[15] I. R. Shafarevich, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl