On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 132-157
Voir la notice de l'article provenant de la source Math-Net.Ru
For any nonsplit $p>2$-extensions of finite groups with cyclic kernel and a quotient-group with two generators which acompanying extensions are semisimple there exists a realization of the quotient-group as Galois group of number fields such as corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).
@article{ZNSL_2016_452_a6,
author = {D. D. Kiselev and I. A. Chubarov},
title = {On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--157},
publisher = {mathdoc},
volume = {452},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/}
}
TY - JOUR AU - D. D. Kiselev AU - I. A. Chubarov TI - On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 132 EP - 157 VL - 452 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/ LA - ru ID - ZNSL_2016_452_a6 ER -
%0 Journal Article %A D. D. Kiselev %A I. A. Chubarov %T On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$ %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 132-157 %V 452 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/ %G ru %F ZNSL_2016_452_a6
D. D. Kiselev; I. A. Chubarov. On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 132-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/