On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 132-157 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

For any nonsplit $p>2$-extensions of finite groups with cyclic kernel and a quotient-group with two generators which acompanying extensions are semisimple there exists a realization of the quotient-group as Galois group of number fields such as corresponding embedding problem is ultrasolvable (i.e., this embedding problem is solvable and has only fields as solutions).
@article{ZNSL_2016_452_a6,
     author = {D. D. Kiselev and I. A. Chubarov},
     title = {On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {132--157},
     year = {2016},
     volume = {452},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/}
}
TY  - JOUR
AU  - D. D. Kiselev
AU  - I. A. Chubarov
TI  - On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 132
EP  - 157
VL  - 452
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/
LA  - ru
ID  - ZNSL_2016_452_a6
ER  - 
%0 Journal Article
%A D. D. Kiselev
%A I. A. Chubarov
%T On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 132-157
%V 452
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/
%G ru
%F ZNSL_2016_452_a6
D. D. Kiselev; I. A. Chubarov. On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 132-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/

[1] D. D. Kiselev, “Primery zadach pogruzheniya, u kotorykh resheniya tolko polya”, UMN, 68:4 (2013), 181–182 | DOI | MR | Zbl

[2] D. D. Kiselev, B. B. Lure, “Ultrarazreshimost i singulyarnost v probleme pogruzheniya”, Zap. nauchn. semin. POMI, 414, 2013, 113–126

[3] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR

[4] D. D. Kiselev, “Ob ultrarazreshimosti gruppovykh $p$-rasshirenii abelevoi gruppy s pomoschyu tsiklicheskogo yadra”, Zap. nauchn. semin. POMI, (prinyata k publikatsii)

[5] V. V. Ishkhanov, B. B. Lure, “Universalno razreshimye zadachi pogruzheniya s tsiklicheskim yadrom”, Zap. nauchn. semin. POMI, 265, 1999, 189–197 | MR | Zbl

[6] A. V. Yakovlev, “Ob ultrarazreshimykh zadachakh pogruzheniya dlya chislovykh polei”, Algebra i analiz, 27:6 (2015), 260–263

[7] S. P. Demushkin, “Gruppa maksimalnogo $p$-rasshireniya lokalnogo polya”, Izv. AN SSSR. Ser. matem., 25:3 (1961), 329–346 | MR | Zbl