@article{ZNSL_2016_452_a6,
author = {D. D. Kiselev and I. A. Chubarov},
title = {On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for~$p>2$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {132--157},
year = {2016},
volume = {452},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/}
}
TY - JOUR AU - D. D. Kiselev AU - I. A. Chubarov TI - On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$ JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 132 EP - 157 VL - 452 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/ LA - ru ID - ZNSL_2016_452_a6 ER -
D. D. Kiselev; I. A. Chubarov. On ultrasolvability of some classes of minimal non-split $p$-extensions with cyclic kernel for $p>2$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 132-157. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a6/
[1] D. D. Kiselev, “Primery zadach pogruzheniya, u kotorykh resheniya tolko polya”, UMN, 68:4 (2013), 181–182 | DOI | MR | Zbl
[2] D. D. Kiselev, B. B. Lure, “Ultrarazreshimost i singulyarnost v probleme pogruzheniya”, Zap. nauchn. semin. POMI, 414, 2013, 113–126
[3] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR
[4] D. D. Kiselev, “Ob ultrarazreshimosti gruppovykh $p$-rasshirenii abelevoi gruppy s pomoschyu tsiklicheskogo yadra”, Zap. nauchn. semin. POMI, (prinyata k publikatsii)
[5] V. V. Ishkhanov, B. B. Lure, “Universalno razreshimye zadachi pogruzheniya s tsiklicheskim yadrom”, Zap. nauchn. semin. POMI, 265, 1999, 189–197 | MR | Zbl
[6] A. V. Yakovlev, “Ob ultrarazreshimykh zadachakh pogruzheniya dlya chislovykh polei”, Algebra i analiz, 27:6 (2015), 260–263
[7] S. P. Demushkin, “Gruppa maksimalnogo $p$-rasshireniya lokalnogo polya”, Izv. AN SSSR. Ser. matem., 25:3 (1961), 329–346 | MR | Zbl