On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 108-131 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We solve a problem in the embedding theory by A. V. Yakovlev for $p$-extensions of odd order with cyclic normal subgroup and abelian quotient-group: for such nonsplit extensions there exists a realization for the quotient-group as Galois group over number fields such as corresponding embedding problem is ultrasolvable (i.e. this embedding problem is solvable and has only fields as solutions). Also we give a solution for embedding problems of $p$-extensions of odd order with kernel of order $p$ and with a quotient-group which is represented by direct product of its proper subgroups – this is a generalization for $p>2$ an analogous result for $p=2$ by A. Ledet.
@article{ZNSL_2016_452_a5,
     author = {D. D. Kiselev},
     title = {On ultrasolvability of $p$-extensions of an abelian group by a~cyclic kernel},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {108--131},
     year = {2016},
     volume = {452},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a5/}
}
TY  - JOUR
AU  - D. D. Kiselev
TI  - On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 108
EP  - 131
VL  - 452
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a5/
LA  - ru
ID  - ZNSL_2016_452_a5
ER  - 
%0 Journal Article
%A D. D. Kiselev
%T On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 108-131
%V 452
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a5/
%G ru
%F ZNSL_2016_452_a5
D. D. Kiselev. On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 108-131. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a5/

[1] V. V. Ishkhanov, “O polupryamoi zadache pogruzheniya s nilpotentnym yadrom”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 3–25 | MR | Zbl

[2] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 645–660 | MR | Zbl

[3] D. D. Kiselev, B. B. Lure, “Ultrarazreshimost i singulyarnost v probleme pogruzheniya”, Zap. nauchn. semin. POMI, 414, 2013, 113–126

[4] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR

[5] D. D. Kiselev, “Primery zadach pogruzheniya, u kotorykh resheniya tolko polya”, UMN, 68:4 (2013), 181–182 | DOI | MR | Zbl

[6] M. Kholl, Teoriya grupp, Izd. inostr. lit., M., 1962

[7] A. Ledet, “On $2$-groups as Galois groups”, Can. J. Math., 47:6 (1995), 1253–1273 | DOI | MR | Zbl

[8] A. V. Yakovlev, “Ob ultrarazreshimykh zadachakh pogruzheniya dlya chislovykh polei”, Algebra i analiz, 27:6 (2015), 260–263

[9] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir., M., 1969 | MR