@article{ZNSL_2016_452_a5,
author = {D. D. Kiselev},
title = {On ultrasolvability of $p$-extensions of an abelian group by a~cyclic kernel},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {108--131},
year = {2016},
volume = {452},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a5/}
}
D. D. Kiselev. On ultrasolvability of $p$-extensions of an abelian group by a cyclic kernel. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 108-131. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a5/
[1] V. V. Ishkhanov, “O polupryamoi zadache pogruzheniya s nilpotentnym yadrom”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 3–25 | MR | Zbl
[2] A. V. Yakovlev, “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 645–660 | MR | Zbl
[3] D. D. Kiselev, B. B. Lure, “Ultrarazreshimost i singulyarnost v probleme pogruzheniya”, Zap. nauchn. semin. POMI, 414, 2013, 113–126
[4] V. V. Ishkhanov, B. B. Lure, D. K. Faddeev, Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR
[5] D. D. Kiselev, “Primery zadach pogruzheniya, u kotorykh resheniya tolko polya”, UMN, 68:4 (2013), 181–182 | DOI | MR | Zbl
[6] M. Kholl, Teoriya grupp, Izd. inostr. lit., M., 1962
[7] A. Ledet, “On $2$-groups as Galois groups”, Can. J. Math., 47:6 (1995), 1253–1273 | DOI | MR | Zbl
[8] A. V. Yakovlev, “Ob ultrarazreshimykh zadachakh pogruzheniya dlya chislovykh polei”, Algebra i analiz, 27:6 (2015), 260–263
[9] Dzh. Kassels, A. Frelikh (red.), Algebraicheskaya teoriya chisel, Mir., M., 1969 | MR