Double cosets of stabilizers of totally isotropic subspaces in a~special unitary group~I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 86-107
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $D$ be a division algebra with a fixed involution and let $V$ be the corresponding unitary space over $D$ with $T$-condition (see [2]). For a pair of totally isotropic subspaces $u,v\leq V$ we consider the double cosets $P_u\gamma P_v$ of their stabilizers $P_u,P_v$ in $\Gamma=\mathrm{SU}(V)$. We give a description of cosets $P_u\gamma P_v$ in the terms of the intersection distance $d_\mathrm{in}(u,\gamma(v))$ and the Witt index of $u+\gamma(v)$.
@article{ZNSL_2016_452_a4,
author = {N. Gordeev and U. Rehmann},
title = {Double cosets of stabilizers of totally isotropic subspaces in a~special unitary {group~I}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {86--107},
publisher = {mathdoc},
volume = {452},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/}
}
TY - JOUR AU - N. Gordeev AU - U. Rehmann TI - Double cosets of stabilizers of totally isotropic subspaces in a~special unitary group~I JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 86 EP - 107 VL - 452 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/ LA - en ID - ZNSL_2016_452_a4 ER -
N. Gordeev; U. Rehmann. Double cosets of stabilizers of totally isotropic subspaces in a~special unitary group~I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 86-107. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/