Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 86-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $D$ be a division algebra with a fixed involution and let $V$ be the corresponding unitary space over $D$ with $T$-condition (see [2]). For a pair of totally isotropic subspaces $u,v\leq V$ we consider the double cosets $P_u\gamma P_v$ of their stabilizers $P_u,P_v$ in $\Gamma=\mathrm{SU}(V)$. We give a description of cosets $P_u\gamma P_v$ in the terms of the intersection distance $d_\mathrm{in}(u,\gamma(v))$ and the Witt index of $u+\gamma(v)$.
@article{ZNSL_2016_452_a4,
     author = {N. Gordeev and U. Rehmann},
     title = {Double cosets of stabilizers of totally isotropic subspaces in a~special unitary {group~I}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {86--107},
     year = {2016},
     volume = {452},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/}
}
TY  - JOUR
AU  - N. Gordeev
AU  - U. Rehmann
TI  - Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 86
EP  - 107
VL  - 452
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/
LA  - en
ID  - ZNSL_2016_452_a4
ER  - 
%0 Journal Article
%A N. Gordeev
%A U. Rehmann
%T Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 86-107
%V 452
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/
%G en
%F ZNSL_2016_452_a4
N. Gordeev; U. Rehmann. Double cosets of stabilizers of totally isotropic subspaces in a special unitary group I. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 86-107. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a4/

[1] E. Artin, Geometric Algebra, Interscience Publishers, New York; Interscience Publishers Ltd., London, 1957 | MR | Zbl

[2] N. Bourbaki, Éléments de Mathématique. Algebre, Chapitres I–III, Herman, Paris, 1956 ; Chapitres VII–IX, Hermann, Paris, 1962 | MR | Zbl

[3] N. Bourbaki, Éléments de Mathématique. Groupes et algèbres Lie, Chapitres IV–VI, Hermann, Paris, 1968 | MR

[4] N. Bourbaki, Éléments de Mathématique. Groupes et algèbres Lie, Chapitres VII–VIII, Hermann, Paris, 1975 | MR

[5] R. W. Carter, Finite groups of Lie type. Conjugacy classes and complex characters, John Wiley and sons, 1985 | MR | Zbl

[6] J. Dieudonné, La géométrie des groupes classiques, Springer-Verlag, Berlin–Heidelberg–New York, 1971 | MR

[7] J. Dieudonné, “On the structure of the unitary group. II”, Amer. J. Math., 75:4 (1953), 665–678 | DOI | MR | Zbl

[8] N. Gordeev, U. Rehmann, “On linearly Kleiman groups”, Transform. Groups, 18:3 (2013), 685–709 | DOI | MR | Zbl

[9] V. Platonov, A. Rapinchuk, Algebraic Groups and Number Theory, Academic Press, 1993 | MR