On derived equivalence of algebras of semidihedral groups with two simple modules
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 70-85
Voir la notice de l'article provenant de la source Math-Net.Ru
We compute the Hochschild cohomology groups of degrees not exceeding 3 for algebras of semidihedral type which form the family $SD(2\mathcal B)_1$ (from the famous K. Erdmann's classification). In the calculation, we use the beforehand construction of the initial part of the minimal projective bimodule resolution for algebras from the family under discussion. The obtained results imply that algebras from the families $SD(2\mathcal B)_1$ and $SD(2\mathcal B)_2$ with the same parameters in defining relations are not derived equivalent.
@article{ZNSL_2016_452_a3,
author = {A. I. Generalov and A. A. Zaikovskii},
title = {On derived equivalence of algebras of semidihedral groups with two simple modules},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {70--85},
publisher = {mathdoc},
volume = {452},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/}
}
TY - JOUR AU - A. I. Generalov AU - A. A. Zaikovskii TI - On derived equivalence of algebras of semidihedral groups with two simple modules JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 70 EP - 85 VL - 452 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/ LA - ru ID - ZNSL_2016_452_a3 ER -
A. I. Generalov; A. A. Zaikovskii. On derived equivalence of algebras of semidihedral groups with two simple modules. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 70-85. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/