On derived equivalence of algebras of semidihedral groups with two simple modules
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 70-85 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We compute the Hochschild cohomology groups of degrees not exceeding 3 for algebras of semidihedral type which form the family $SD(2\mathcal B)_1$ (from the famous K. Erdmann's classification). In the calculation, we use the beforehand construction of the initial part of the minimal projective bimodule resolution for algebras from the family under discussion. The obtained results imply that algebras from the families $SD(2\mathcal B)_1$ and $SD(2\mathcal B)_2$ with the same parameters in defining relations are not derived equivalent.
@article{ZNSL_2016_452_a3,
     author = {A. I. Generalov and A. A. Zaikovskii},
     title = {On derived equivalence of algebras of semidihedral groups with two simple modules},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {70--85},
     year = {2016},
     volume = {452},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/}
}
TY  - JOUR
AU  - A. I. Generalov
AU  - A. A. Zaikovskii
TI  - On derived equivalence of algebras of semidihedral groups with two simple modules
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 70
EP  - 85
VL  - 452
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/
LA  - ru
ID  - ZNSL_2016_452_a3
ER  - 
%0 Journal Article
%A A. I. Generalov
%A A. A. Zaikovskii
%T On derived equivalence of algebras of semidihedral groups with two simple modules
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 70-85
%V 452
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/
%G ru
%F ZNSL_2016_452_a3
A. I. Generalov; A. A. Zaikovskii. On derived equivalence of algebras of semidihedral groups with two simple modules. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 70-85. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a3/

[1] K. Erdmann, Blocks of tame representation type and related algebras, Lecture Notes in Math., 1428, Berlin–Heidelberg, 1990 | DOI | MR | Zbl

[2] Th. Holm, “Derived equivalence classification of algebras of dihedral, semidihedral, and quaternion type”, J. Algebra, 211 (1999), 159–205 | DOI | MR | Zbl

[3] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, III. Seriya $SD(2\mathcal B)_2$ v kharakteristike 2”, Zap. nauchn. semin. POMI, 400, 2012, 133–157 | MR

[4] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VI. Seriya $SD(2\mathcal B)_2$ v kharakteristike, otlichnoi ot 2”, Zap. nauchn. semin. POMI, 443, 2016, 61–77

[5] A. I. Generalov, “Kogomologii Khokhshilda algebr poludiedralnogo tipa, VII. Algebry s malym parametrom”, Zap. nauchn. semin. POMI, 452, 2016, 52–69

[6] Yu. V. Volkov, A. I. Generalov, S. O. Ivanov, “O postroenii bimodulnykh rezolvent s pomoschyu lemmy Khappelya”, Zap. nauchn. semin. POMI, 375, 2010, 61–70 | Zbl

[7] M. A. Antipov, A. I. Generalov, “Kogomologii algebr poludiedralnogo tipa. II”, Zap. nauchn. semin. POMI, 289, 2002, 9–36 | MR | Zbl