Vector bundles on $\mathbf P^1_\mathbb Z$ with generic fiber $\mathcal{O\oplus O}(1)$ and simple jumps
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 218-237
Voir la notice de l'article provenant de la source Math-Net.Ru
We study vector bundles on the projective line over a Dedekind domain $A$. In the case where $A$ is a PID, we get a complete classification of rank 2 vector bundles with generic fiber $\mathcal{O\oplus O}(1)$ and with special fibers isomorphic either to $\mathcal{O\oplus O}(1)$ or $\mathcal O(-1)\oplus\mathcal O(2)$.
@article{ZNSL_2016_452_a11,
author = {S. S. Iakovenko},
title = {Vector bundles on $\mathbf P^1_\mathbb Z$ with generic fiber $\mathcal{O\oplus O}(1)$ and simple jumps},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {218--237},
publisher = {mathdoc},
volume = {452},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a11/}
}
TY - JOUR
AU - S. S. Iakovenko
TI - Vector bundles on $\mathbf P^1_\mathbb Z$ with generic fiber $\mathcal{O\oplus O}(1)$ and simple jumps
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2016
SP - 218
EP - 237
VL - 452
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a11/
LA - ru
ID - ZNSL_2016_452_a11
ER -
S. S. Iakovenko. Vector bundles on $\mathbf P^1_\mathbb Z$ with generic fiber $\mathcal{O\oplus O}(1)$ and simple jumps. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 218-237. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a11/