Normalizers of elementary overgroups of $\mathrm{Ep}(2,A)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 32-51
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $A$ be an involution ring, $e_1,\dots,e_n$ be a full system of hermitian idempotents in $A$, every $e_i$ generates $A$ as a two-sided ideal, and $2\in A^*$. In this paper we calculate normalizers of groups $\mathrm{Ep}(2,A)\cdot\mathrm E(2,A,I)$ under natural assumptions on $A$, where $\mathrm{Ep}(2,A)$ denotes the elementary symplectic group, $\mathrm E(2,A,I)$ elementary subgroups of level $I$.
@article{ZNSL_2016_452_a1,
author = {E. Yu. Voronetsky},
title = {Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--51},
year = {2016},
volume = {452},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/}
}
E. Yu. Voronetsky. Normalizers of elementary overgroups of $\mathrm{Ep}(2,A)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 32-51. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/
[1] N. A. Vavilov, V. A. Petrov, “O nadgruppakh $\mathrm{Ep}(2l,R)$”, Algebra i analiz, 15:4 (2003), 72–114 | MR | Zbl
[2] N. A. Vavilov, A. V. Stepanov, “Lineinye gruppy nad obschimi koltsami I. Obschie mesta”, Zap. nauchn. semin. POMI, 394, 2011, 33–139 | MR
[3] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestnik SamGU, 2008, no. 3, 51–95 | Zbl
[4] E. Yu. Voronetskii, “O normalnosti elementarnoi podgruppy v $\mathrm{Sp}(2,A)$”, Zap. nauchn. semin. POMI, 443, 2016, 33–45
[5] A. Bak, Tang Guoping, “Stability for Hermitian $K_1$”, J. Pure Appl. Algebra, 150 (2000), 107–121 | DOI | MR | Zbl
[6] V. A. Petrov, “Overgroups of unitary groups”, K-Theory, 29 (2003), 147–174 | DOI | MR | Zbl