Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 32-51

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be an involution ring, $e_1,\dots,e_n$ be a full system of hermitian idempotents in $A$, every $e_i$ generates $A$ as a two-sided ideal, and $2\in A^*$. In this paper we calculate normalizers of groups $\mathrm{Ep}(2,A)\cdot\mathrm E(2,A,I)$ under natural assumptions on $A$, where $\mathrm{Ep}(2,A)$ denotes the elementary symplectic group, $\mathrm E(2,A,I)$ elementary subgroups of level $I$.
@article{ZNSL_2016_452_a1,
     author = {E. Yu. Voronetsky},
     title = {Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {32--51},
     publisher = {mathdoc},
     volume = {452},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/}
}
TY  - JOUR
AU  - E. Yu. Voronetsky
TI  - Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 32
EP  - 51
VL  - 452
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/
LA  - ru
ID  - ZNSL_2016_452_a1
ER  - 
%0 Journal Article
%A E. Yu. Voronetsky
%T Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 32-51
%V 452
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/
%G ru
%F ZNSL_2016_452_a1
E. Yu. Voronetsky. Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 32-51. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/