Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 32-51
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be an involution ring, $e_1,\dots,e_n$ be a full system of hermitian idempotents in $A$, every $e_i$ generates $A$ as a two-sided ideal, and $2\in A^*$. In this paper we calculate normalizers of groups $\mathrm{Ep}(2,A)\cdot\mathrm E(2,A,I)$ under natural assumptions on $A$, where $\mathrm{Ep}(2,A)$ denotes the elementary symplectic group, $\mathrm E(2,A,I)$ elementary subgroups of level $I$.
@article{ZNSL_2016_452_a1,
author = {E. Yu. Voronetsky},
title = {Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {32--51},
publisher = {mathdoc},
volume = {452},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/}
}
E. Yu. Voronetsky. Normalizers of elementary overgroups of~$\mathrm{Ep}(2,A)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 32-51. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a1/