Local-global principle for general quadratic and general Hermitian groups and the nilpotence of $\mathrm{KH}_1$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 5-31 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In this article we establish an analog of the Quillen–Suslin's local-global principle for the elementary subgroup of the general quadratic group and the general Hermitian group. We show that unstable $\mathrm K_1$-groups of general Hermitian groups over module finite rings are nilpotent-by-abelian. This generalizes earlier results of A. Bak, R. Hazrat, and N. Vavilov.
@article{ZNSL_2016_452_a0,
     author = {R. Basu},
     title = {Local-global principle for general quadratic and general {Hermitian} groups and the nilpotence of~$\mathrm{KH}_1$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--31},
     year = {2016},
     volume = {452},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/}
}
TY  - JOUR
AU  - R. Basu
TI  - Local-global principle for general quadratic and general Hermitian groups and the nilpotence of $\mathrm{KH}_1$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 31
VL  - 452
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/
LA  - en
ID  - ZNSL_2016_452_a0
ER  - 
%0 Journal Article
%A R. Basu
%T Local-global principle for general quadratic and general Hermitian groups and the nilpotence of $\mathrm{KH}_1$
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-31
%V 452
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/
%G en
%F ZNSL_2016_452_a0
R. Basu. Local-global principle for general quadratic and general Hermitian groups and the nilpotence of $\mathrm{KH}_1$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/

[1] E. Abe, “Chevalley groups over local rings”, Tôhoku Math. J. (2), 21 (1969), 474–494 | DOI | MR | Zbl

[2] A. Bak, $\mathrm K$-Theory of forms, Annals of Mathematics Studies, 98, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1981 | MR

[3] A. Bak, “Nonabelian $\mathrm K$-theory: the nilpotent class of $\mathrm K_1$ and general stability”, $\mathrm K$-Theory, 4:4 (1991), 363–397 | DOI | MR | Zbl

[4] A. Bak, G. Tang, “Stability for Hermitian $\mathrm K_1$”, J. Pure Appl. Algebra, 150 (2000), 107–121 | DOI | MR | Zbl

[5] A. Bak, V. Petrov, G. Tang, “Stability for Quadratic $\mathrm K_1$”, $\mathrm K$-Theory, 29 (2003), 1–11 | DOI | MR

[6] A. Bak, R. Basu, R. A. Rao, “Local-global principle for transvection groups”, Proc. Amer. Math. Soc., 138:4 (2010), 1191–1204 | DOI | MR | Zbl

[7] A. Bak, R. Hazrat, N. Vavilov, “Localization-completion strikes again: Relative $\mathrm K_1$ is nilpotent-by-abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[8] A. Bak, N. Vavilov, “Structure of hyperbolic unitary groups I, elementary subgroups”, Alg. Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl

[9] H. Bass, Algebraic K-Theory, Benjamin, New York–Amsterdam, 1968 | MR | Zbl

[10] H. Bass, “Unitary algebraic $\mathrm K$-theory”, Algebraic K-theory, Proc. Conf. (Battelle Memorial Inst., Seattle, Wash., 1972), v. III, Lecture Notes in Mathematics, 343, Hermitian $\mathrm K$-theory and geometric applications, Springer, Berlin, 1973, 57–265 | DOI | MR

[11] H. Bass, “Quadratic modules over polynomial rings”, Contribution to Algebra, Collection of papers dedicated to Ellis Kolchin, Academic Press, N.Y., 1977, 1–23 | DOI | MR

[12] R. Basu, R. A. Rao, R. Khanna, “On Quillen's local-global principle”, Commutative Algebra and Algebraic Geometry (Bangalore, India, 2003), Contemp. Math., 390, AMS, Providence, RI, 2005, 17–30 | DOI | MR | Zbl

[13] A. J. Berrick, M. E. Keating, An Introduction to Rings and Modules with K-theory in view, Cambridge Studies Adv. Math., 65, Cambridge Univ. Press, 2000 | MR | Zbl

[14] P. Chattopadhyay, R. A. Rao, “Elementary symplectic orbits and improved $\mathrm K_1$-stability”, J. K-Theory, 7:2 (2011), 389–403 | DOI | MR | Zbl

[15] J. Fasel, R. A. Rao, R. G. Swan, “On stably free modules over affine algebras”, Publ. Math. Inst. Hautes Études Sci., 116 (2012), 223–243 | DOI | MR | Zbl

[16] Fu An Li, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10 (1989), 341–350 | MR | Zbl

[17] R. Hazrat, “Dimension theory and nonstable $\mathrm K_1$ of quadratic modules”, $\mathrm K$-Theory, 27:4 (2002), 293–328 | DOI | MR | Zbl

[18] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179:1–2 (2003), 99–116 | DOI | MR | Zbl

[19] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings. On the occasion of his 65th birthday”, J. $\mathrm K$-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[20] R. Hazrat, N. Vavilov, Z. Zhang, “Relative unitary commutator calculus, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl

[21] J. Math. Sci. (N.Y.), 179:6 (2011), 662–678 | DOI | MR | Zbl

[22] A. J. Hahn, O. T. O'Meara, The Classical groups and $\mathrm K$-theory, With a foreword by J. Dieudonné, Grundlehren Math. Wiss., 291, Springer-Verlag, Berlin, 1989 | DOI | MR

[23] N. Jacobson, Lectures on Quadratic Jordan algebras, Tata Istitute of Fundamental Research, Bombay, 1969 | MR | Zbl

[24] I. S. Klein, A. V. Mikhalev, “The Orthogonal Steinberg group over a ring with involution”, Algebra Logika, 9 (1970), 145–166 | MR

[25] I. S. Klein, A. V. Mikhalev, “The Unitary Steinberg group over a ring with involution”, Algebra Logika, 9 (1970), 510–519 | MR

[26] V. I. Kopeiko, “The stabilization of Symplectic groups over a polynomial ring”, Math. USSR. Sbornik, 34:5 (1978), 655–669 | DOI | MR | Zbl

[27] K. McCrimmon, “A general theory of Jordan rings”, Proc. Nat. Acad. Sci. U.S.A., 56 (1966), 1072–1079 | DOI | MR | Zbl

[28] R. Parimala, “Failure of Quadratic analog of Serre's Conjecture”, Bull. Amer. Math. Soc., 82 (1976), 962–964 | DOI | MR | Zbl

[29] R. Parimala, “Failure of Quadratic analog of Serre's Conjecture”, Amer. J. Math., 100 (1978), 913–924 | DOI | MR | Zbl

[30] V. A. Petrov, “Odd unitary groups”, J. Math. Sci. (N.Y.), 130:3 (2005), 4752–4766 | DOI | MR | Zbl

[31] St. Petersburg Math. J., 20:4 (2009), 625–644 | DOI | MR | Zbl

[32] R. A. Rao, W. van der Kallen, “Improved stability for $\mathrm{SK}_1$ and $\mathrm{WMS}_d$ of a non-singular affine algebra”, $\mathrm K$-theory (Strasbourg, 1992), Astérisque, 226, 1994, 411–420 | MR | Zbl

[33] R. A. Rao, R. Basu, S. Jose, “Injective Stability for $\mathrm K_1$ of the Orthogonal group”, J. Algebra, 323 (2010), 393–396 | DOI | MR | Zbl

[34] Sergei Sinchuk, “Injective stability for unitary $\mathrm K_1$, revisited”, J. K-Theory, 11:2 (2013), 233–242 | MR | Zbl

[35] A. A. Suslin, “On the structure of special Linear group over polynomial rings”, Math. USSR. Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[36] M. R. Stein, “Stability theorems for $\mathrm K_1$, $\mathrm K_2$ and related functors modeled on Chevalley groups”, Japan. J. Math. (N.S.), 4:1 (1978), 77–108 | MR | Zbl

[37] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and Orthogonal groups over polynomial rings”, Zap. Nauchn. Sem. LOMI, 71, 1978, 216–250 | MR | Zbl

[38] A. A. Suslin, L. N. Vaserstein, “Serre's problem on projective modules over polynomial rings, and algebraic $\mathrm K$-theory”, Izv. Akad SSSR. Ser. Mat., 40:5 (1976), 993–1054 | MR | Zbl

[39] Guoping Tang, “Hermitian groups and $K$-theory”, $\mathrm K$-Theory, 13:3 (1998), 209–267 | DOI | MR | Zbl

[40] G. Taddei, “Normalité des groupes élémentaires dans les groupes de Chevalley sur un anneau”, Application of Algebraic $\mathrm K$-Theory to Algebraic Geometry and Number Theory, Part II (Boulder, Colo., 1983), Contemp. Math., 55, Amer. Math. Soc., Providence, RI, 1986, 693–710 | DOI | MR

[41] M. S. Tulenbaev, “Schur multiplier of a group of elementary matrices of finite order”, Zap. Nauchn. Semin. LOMI, 86, 1979, 162–169 | MR | Zbl

[42] Math. USSR-Sbornik, 8:3 (1969), 383–400 | DOI | MR | Zbl

[43] L. N. Vaserstein, “Stabilization of Unitary and Orthogonal Groups over a Ring with Involution”, Mat. Sbornik, 81(123):3 (1970), 328–351 | DOI | MR | Zbl

[44] L. N. Vaserstein, “Stabilization for Classical groups over rings”, Mat. Sb. (N.S.), 93(135):2 (1974), 268–295, 327 (in Russian) | MR | Zbl

[45] L. N. Vaserstein, “On the normal subgroups of $\mathrm{GL}_n$ over a ring”, Algebraic $K$-theory, Proc. Conf. (Northwestern Univercisy, Evanston, Ill., 1980), Lecture Notes in Mathematics, 854, Springer, Berlin–New York, 1981, 456–465 | DOI | MR

[46] Weibe Yu, “Stability for odd unitary $\mathrm K_1$ under the $\Lambda$-stable range condition”, J. Pure Appl. Algebra, 217 (2013), 886–891 | DOI | MR

[47] J. Wilson, “The normal and subnormal structure of general linear groups”, Proc. Camb. Phil. Soc., 71 (1972), 163–177 | DOI | MR | Zbl