Local-global principle for general quadratic and general Hermitian groups and the nilpotence of~$\mathrm{KH}_1$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 5-31
Voir la notice de l'article provenant de la source Math-Net.Ru
In this article we establish an analog of the Quillen–Suslin's local-global principle for the elementary subgroup of the general quadratic group and the general Hermitian group. We show that unstable $\mathrm K_1$-groups of general Hermitian groups over module finite rings are nilpotent-by-abelian. This generalizes earlier results of A. Bak, R. Hazrat, and N. Vavilov.
@article{ZNSL_2016_452_a0,
author = {R. Basu},
title = {Local-global principle for general quadratic and general {Hermitian} groups and the nilpotence of~$\mathrm{KH}_1$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--31},
publisher = {mathdoc},
volume = {452},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/}
}
TY - JOUR
AU - R. Basu
TI - Local-global principle for general quadratic and general Hermitian groups and the nilpotence of~$\mathrm{KH}_1$
JO - Zapiski Nauchnykh Seminarov POMI
PY - 2016
SP - 5
EP - 31
VL - 452
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/
LA - en
ID - ZNSL_2016_452_a0
ER -
R. Basu. Local-global principle for general quadratic and general Hermitian groups and the nilpotence of~$\mathrm{KH}_1$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 30, Tome 452 (2016), pp. 5-31. http://geodesic.mathdoc.fr/item/ZNSL_2016_452_a0/