Connection of the different types of inverse data for the one-dimensional Schr\"odinger operator on the half-line
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 134-155
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider inverse dynamical, spectral, quantum and acoustical scattering problems for the Schrödinger operator on the half line. The goal of the paper is to establish the connections between different types of inverse data for these problems. The central objects which serve as a source for all formulaes are kernels of so-called connecting operators and Krein equations.
@article{ZNSL_2016_451_a8,
author = {A. S. Mikhaylov and V. S. Mikhaylov},
title = {Connection of the different types of inverse data for the one-dimensional {Schr\"odinger} operator on the half-line},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {134--155},
publisher = {mathdoc},
volume = {451},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a8/}
}
TY - JOUR AU - A. S. Mikhaylov AU - V. S. Mikhaylov TI - Connection of the different types of inverse data for the one-dimensional Schr\"odinger operator on the half-line JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 134 EP - 155 VL - 451 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a8/ LA - en ID - ZNSL_2016_451_a8 ER -
%0 Journal Article %A A. S. Mikhaylov %A V. S. Mikhaylov %T Connection of the different types of inverse data for the one-dimensional Schr\"odinger operator on the half-line %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 134-155 %V 451 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a8/ %G en %F ZNSL_2016_451_a8
A. S. Mikhaylov; V. S. Mikhaylov. Connection of the different types of inverse data for the one-dimensional Schr\"odinger operator on the half-line. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 134-155. http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a8/