On continuous spectrum eigenfunctions asymptotic behaviour at infinity in configuration space for the system of three three-dimensional like-charged quantum particles
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 79-115
Voir la notice de l'article provenant de la source Math-Net.Ru
To our knowledge there are no complete results, even not strictly mathematically justified, related to the system of three and more quantum particles, interacting by Coulomb pair potentials, and expressed in terms of eigenfunctions. For the system of three such identical particles we suggest the asymptotic formulas describing the behaviour of eigenfunctions at infinity in configuration space.
@article{ZNSL_2016_451_a6,
author = {S. B. Levin},
title = {On continuous spectrum eigenfunctions asymptotic behaviour at infinity in configuration space for the system of three three-dimensional like-charged quantum particles},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {79--115},
publisher = {mathdoc},
volume = {451},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a6/}
}
TY - JOUR AU - S. B. Levin TI - On continuous spectrum eigenfunctions asymptotic behaviour at infinity in configuration space for the system of three three-dimensional like-charged quantum particles JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 79 EP - 115 VL - 451 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a6/ LA - ru ID - ZNSL_2016_451_a6 ER -
%0 Journal Article %A S. B. Levin %T On continuous spectrum eigenfunctions asymptotic behaviour at infinity in configuration space for the system of three three-dimensional like-charged quantum particles %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 79-115 %V 451 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a6/ %G ru %F ZNSL_2016_451_a6
S. B. Levin. On continuous spectrum eigenfunctions asymptotic behaviour at infinity in configuration space for the system of three three-dimensional like-charged quantum particles. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 79-115. http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a6/