On algebras of three-dimensional quaternionic harmonic fields
Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 14-28

Voir la notice de l'article provenant de la source Math-Net.Ru

A quaternionic field is a pair $p=\{\alpha,u\}$ of function $\alpha$ and vector field $u$ given on a 3d Riemannian maifold $\Omega$ with the boundary. The field is said to be harmonic if $\nabla\alpha=\operatorname{rot}u$ in $\Omega$. The linear space of harmonic fields is not an algebra w.r.t. quaternion multiplication. However, it may contain the commutative algebras, what is the subject of the paper. Possible application of these algebras to the impedance tomography problem is touched on.
@article{ZNSL_2016_451_a1,
     author = {M. I. Belishev},
     title = {On algebras of three-dimensional quaternionic harmonic fields},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--28},
     publisher = {mathdoc},
     volume = {451},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a1/}
}
TY  - JOUR
AU  - M. I. Belishev
TI  - On algebras of three-dimensional quaternionic harmonic fields
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 14
EP  - 28
VL  - 451
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a1/
LA  - ru
ID  - ZNSL_2016_451_a1
ER  - 
%0 Journal Article
%A M. I. Belishev
%T On algebras of three-dimensional quaternionic harmonic fields
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 14-28
%V 451
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a1/
%G ru
%F ZNSL_2016_451_a1
M. I. Belishev. On algebras of three-dimensional quaternionic harmonic fields. Zapiski Nauchnykh Seminarov POMI, Mathematical problems in the theory of wave propagation. Part 46, Tome 451 (2016), pp. 14-28. http://geodesic.mathdoc.fr/item/ZNSL_2016_451_a1/