On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 14-36

Voir la notice de l'article provenant de la source Math-Net.Ru

While considering the square matrix as an adjacency matrix of a weighted digraph we construct an extended digraph, whose laplacian contains the original matrix as a submatrix. This construction allows us to use the known results on laplacians to study arbitrary square matrices. An eigenvector calculation in parametrical form demonstrates a connection between its components and a tree-like structure of the digraph.
@article{ZNSL_2016_450_a1,
     author = {V. A. Buslov},
     title = {On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--36},
     publisher = {mathdoc},
     volume = {450},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/}
}
TY  - JOUR
AU  - V. A. Buslov
TI  - On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 14
EP  - 36
VL  - 450
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/
LA  - ru
ID  - ZNSL_2016_450_a1
ER  - 
%0 Journal Article
%A V. A. Buslov
%T On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 14-36
%V 450
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/
%G ru
%F ZNSL_2016_450_a1
V. A. Buslov. On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 14-36. http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/