On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph
Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 14-36
Voir la notice de l'article provenant de la source Math-Net.Ru
While considering the square matrix as an adjacency matrix of a weighted digraph we construct an extended digraph, whose laplacian contains the original matrix as a submatrix. This construction allows us to use the known results on laplacians to study arbitrary square matrices. An eigenvector calculation in parametrical form demonstrates a connection between its components and a tree-like structure of the digraph.
@article{ZNSL_2016_450_a1,
author = {V. A. Buslov},
title = {On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {14--36},
publisher = {mathdoc},
volume = {450},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/}
}
TY - JOUR AU - V. A. Buslov TI - On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 14 EP - 36 VL - 450 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/ LA - ru ID - ZNSL_2016_450_a1 ER -
V. A. Buslov. On characteristical polinomial and eigenvectors in terms of tree-like structure of the graph. Zapiski Nauchnykh Seminarov POMI, Combinatorics and graph theory. Part VIII, Tome 450 (2016), pp. 14-36. http://geodesic.mathdoc.fr/item/ZNSL_2016_450_a1/