Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 130-167
Voir la notice de l'article provenant de la source Math-Net.Ru
Simplex-module algorithm ($\mathcal{SM}$-algorithm) for expansion of algebraic numbers $\alpha=(\alpha_1,\ldots,\alpha_d)$ in multidimensional continued fractions is offered. The method is based on 1) minimal rational simplices $\mathbf s$, where $\alpha\in\mathbf s$, and 2) Pisot matrices $P_\alpha$ for which $\widehat \alpha=(\alpha_1,\ldots,\alpha_d,1)$ is eigenvector. A multi-dimensional generalization of the Lagrange theorem is proved.
@article{ZNSL_2016_449_a6,
author = {V. G. Zhuravlev},
title = {Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {130--167},
publisher = {mathdoc},
volume = {449},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a6/}
}
TY - JOUR AU - V. G. Zhuravlev TI - Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 130 EP - 167 VL - 449 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a6/ LA - ru ID - ZNSL_2016_449_a6 ER -
V. G. Zhuravlev. Simplex-module algorithm for expansion of algebraic numbers in multidimensional continued fractions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 130-167. http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a6/