Lattice points in many-dimensional balls
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 261-274
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $P_k(n)$ be the difference of the number of points of the integer lattice contained in the ball $y_1^2+\dots+y_k^2\leq n$ and the volume of this ball. We investigate the asymptotic behavior of the sums $\sum_{n\leq x}P_k(n)$, $(k\geq4)$, $\sum_{n\leq x}P_3^2(n)$, and $\sum_{n\leq x}P_4^2(n)$ as $x\to+\infty$.
@article{ZNSL_2016_449_a12,
author = {O. M. Fomenko},
title = {Lattice points in many-dimensional balls},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {261--274},
publisher = {mathdoc},
volume = {449},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a12/}
}
O. M. Fomenko. Lattice points in many-dimensional balls. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 261-274. http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a12/