Interaction of Hecke--Shimura rings and zeta functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

An automorphic structure on a Lie group consists of Hecke–Shimura ring of an arithmetical discrete subgroup and a linear representation of the ring on an invariant space of automorphic forms given by Hecke operators. The paper is devoted to interactions (transfer homomorphisms) of Hecke–Shimura rings of integral symplectic groups and integral orthogonal groups of integral positive definite quadratic forms.
@article{ZNSL_2016_449_a0,
     author = {A. Andrianov},
     title = {Interaction of {Hecke--Shimura} rings and zeta functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {449},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a0/}
}
TY  - JOUR
AU  - A. Andrianov
TI  - Interaction of Hecke--Shimura rings and zeta functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 14
VL  - 449
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a0/
LA  - en
ID  - ZNSL_2016_449_a0
ER  - 
%0 Journal Article
%A A. Andrianov
%T Interaction of Hecke--Shimura rings and zeta functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-14
%V 449
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a0/
%G en
%F ZNSL_2016_449_a0
A. Andrianov. Interaction of Hecke--Shimura rings and zeta functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 32, Tome 449 (2016), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2016_449_a0/