Numerical investigation of the asymptotics of the probabilities of paths in a~Markov process on the 3D Young graph close to a~central one
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 69-79
Voir la notice de l'article provenant de la source Math-Net.Ru
The article is devoted to the investigation of the asymptotics of the probabilities of paths in a certain Markov process on the 3D Young graph. We introduce a normalized dimension of paths. We study the growth and oscillations of normalized dimensions along greedy trajectories of this process using computer experiments.
@article{ZNSL_2016_448_a3,
author = {N. N. Vasiliev and V. S. Duzhin},
title = {Numerical investigation of the asymptotics of the probabilities of paths in {a~Markov} process on the {3D} {Young} graph close to a~central one},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {69--79},
publisher = {mathdoc},
volume = {448},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a3/}
}
TY - JOUR AU - N. N. Vasiliev AU - V. S. Duzhin TI - Numerical investigation of the asymptotics of the probabilities of paths in a~Markov process on the 3D Young graph close to a~central one JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 69 EP - 79 VL - 448 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a3/ LA - ru ID - ZNSL_2016_448_a3 ER -
%0 Journal Article %A N. N. Vasiliev %A V. S. Duzhin %T Numerical investigation of the asymptotics of the probabilities of paths in a~Markov process on the 3D Young graph close to a~central one %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 69-79 %V 448 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a3/ %G ru %F ZNSL_2016_448_a3
N. N. Vasiliev; V. S. Duzhin. Numerical investigation of the asymptotics of the probabilities of paths in a~Markov process on the 3D Young graph close to a~central one. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 69-79. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a3/