Asymptotics of the Jordan normal form of a~random nilpotent matrix
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 252-262

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the Jordan normal form of an upper triangular matrix constructed from a random acyclic graph or a random poset. Some limit theorems and concentration results for the number and sizes of Jordan blocks are obtained. In particular, we study a linear algebraic analog of Ulam's longest increasing subsequence problem.
@article{ZNSL_2016_448_a16,
     author = {F. V. Petrov and V. V. Sokolov},
     title = {Asymptotics of the {Jordan} normal form of a~random nilpotent matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {252--262},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a16/}
}
TY  - JOUR
AU  - F. V. Petrov
AU  - V. V. Sokolov
TI  - Asymptotics of the Jordan normal form of a~random nilpotent matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 252
EP  - 262
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a16/
LA  - ru
ID  - ZNSL_2016_448_a16
ER  - 
%0 Journal Article
%A F. V. Petrov
%A V. V. Sokolov
%T Asymptotics of the Jordan normal form of a~random nilpotent matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 252-262
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a16/
%G ru
%F ZNSL_2016_448_a16
F. V. Petrov; V. V. Sokolov. Asymptotics of the Jordan normal form of a~random nilpotent matrix. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 252-262. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a16/