Wishart--Pickrell distributions and closures of group actions
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 236-245

Voir la notice de l'article provenant de la source Math-Net.Ru

Consider probability distributions on the space of infinite Hermitian matrices $\mathrm{Herm}(\infty)$ invariant with respect to the unitary group $\mathrm U(\infty)$. We describe the closure of $\mathrm U(\infty)$ in the space of spreading maps (polymorphisms) of $\mathrm{Herm}(\infty)$; this closure is a semigroup isomorphic to the semigroup of all contractive operators.
@article{ZNSL_2016_448_a14,
     author = {Yu. A. Neretin},
     title = {Wishart--Pickrell distributions and closures of group actions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {236--245},
     publisher = {mathdoc},
     volume = {448},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a14/}
}
TY  - JOUR
AU  - Yu. A. Neretin
TI  - Wishart--Pickrell distributions and closures of group actions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 236
EP  - 245
VL  - 448
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a14/
LA  - ru
ID  - ZNSL_2016_448_a14
ER  - 
%0 Journal Article
%A Yu. A. Neretin
%T Wishart--Pickrell distributions and closures of group actions
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 236-245
%V 448
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a14/
%G ru
%F ZNSL_2016_448_a14
Yu. A. Neretin. Wishart--Pickrell distributions and closures of group actions. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 236-245. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a14/