On local combinatorial formulas for Chern classes of a~triangulated circle bundle
Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 201-235
Voir la notice de l'article provenant de la source Math-Net.Ru
A principal circle bundle over a PL polyhedron can be triangulated and thus obtains combinatorics. The triangulation is assembled from triangulated circle bundles over simplices. To every triangulated circle bundle over a simplex we associate a necklace (in the combinatorial sense). We express rational local formulas for all powers of the first Chern class in terms of expectations of the parities of the associated necklaces. This rational parity is a combinatorial isomorphism invariant of a triangulated circle bundle over a simplex, measuring the mixing by the triangulation of the circular graphs over vertices of the simplex. The goal of this note is to sketch the logic of deducing these formulas from Kontsevitch's cyclic invariant connection form on metric polygons.
@article{ZNSL_2016_448_a13,
author = {N. Mnev and G. Sharygin},
title = {On local combinatorial formulas for {Chern} classes of a~triangulated circle bundle},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {201--235},
publisher = {mathdoc},
volume = {448},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a13/}
}
TY - JOUR AU - N. Mnev AU - G. Sharygin TI - On local combinatorial formulas for Chern classes of a~triangulated circle bundle JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 201 EP - 235 VL - 448 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a13/ LA - en ID - ZNSL_2016_448_a13 ER -
N. Mnev; G. Sharygin. On local combinatorial formulas for Chern classes of a~triangulated circle bundle. Zapiski Nauchnykh Seminarov POMI, Representation theory, dynamical systems, combinatorial methods. Part XXVII, Tome 448 (2016), pp. 201-235. http://geodesic.mathdoc.fr/item/ZNSL_2016_448_a13/