Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 44, Tome 447 (2016), pp. 123-128
Voir la notice de l'article provenant de la source Math-Net.Ru
Let a function $f$ be holomorphic in the unit ball $\mathbb B^n$, continuous in the closed ball $\overline{\mathbb B}^n$, and let $f(z)\ne0$, $z\in\mathbb B^n$. Assume that $|f|$ belongs to the $\alpha$-Hölder class on the unit sphere $S^n$, $0\alpha\leq1$. The present paper is devoted to the proof of statement that $f$ belongs to the $\alpha/2$-Hölder class on $\overline{\mathbb B}^n$.
@article{ZNSL_2016_447_a8,
author = {N. A. Shirokov},
title = {Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {123--128},
publisher = {mathdoc},
volume = {447},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_447_a8/}
}
TY - JOUR AU - N. A. Shirokov TI - Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 123 EP - 128 VL - 447 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_447_a8/ LA - ru ID - ZNSL_2016_447_a8 ER -
N. A. Shirokov. Smoothness of a holomorphic function in a ball and smoothness of its modulus on the sphere. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part 44, Tome 447 (2016), pp. 123-128. http://geodesic.mathdoc.fr/item/ZNSL_2016_447_a8/