Extreme values of Epstein zeta-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 250-267

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $Q(u_1,u_2,\dots,u_l)$ be a positive definite quadratic form in $l(\geq2)$ variables and with integer coefficients. Put $$ \zeta_Q(s)=\sum'(Q(u_1,u_2,\dots,u_l))^{-s} $$ where the accent indicates that the summation is over all integer $l$-tuples $(u_1,u_2,\dots,u_l)$ with the exception of $(0,0,\dots,0)$. It is known that $\zeta_Q(s)\big(s-\frac l2\big)$ is an entire function. We treat $\Omega$-theorems for $\zeta_Q(s)l\leq3)$ and for some $\zeta_Q(s)(l=2)$. Let $l\leq4$ and $F_Q(s)=\zeta_Q\big(s+\frac l2-1\big)$. As $t$ tends to infinity, we have $$ \log\bigg|F_Q\biggl(\frac12+it\biggr)\bigg|=\Omega_+\bigg(\bigg(\frac{\log t}{\log\log t}\bigg)^{1/2}\bigg), $$ and $$ \log |F_Q(\sigma_0+it)|=\Omega_+\bigg(\frac{(\log t)^{1-\sigma_0}}{\log\log t}\bigg) $$ for fixed $\sigma_0\in\big(\frac12,1\big)$.
@article{ZNSL_2016_445_a5,
     author = {O. M. Fomenko},
     title = {Extreme values of {Epstein} zeta-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--267},
     publisher = {mathdoc},
     volume = {445},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Extreme values of Epstein zeta-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 250
EP  - 267
VL  - 445
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/
LA  - ru
ID  - ZNSL_2016_445_a5
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Extreme values of Epstein zeta-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 250-267
%V 445
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/
%G ru
%F ZNSL_2016_445_a5
O. M. Fomenko. Extreme values of Epstein zeta-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/