Extreme values of Epstein zeta-functions
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 250-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $Q(u_1,u_2,\dots,u_l)$ be a positive definite quadratic form in $l(\geq2)$ variables and with integer coefficients. Put $$ \zeta_Q(s)=\sum'(Q(u_1,u_2,\dots,u_l))^{-s} $$ where the accent indicates that the summation is over all integer $l$-tuples $(u_1,u_2,\dots,u_l)$ with the exception of $(0,0,\dots,0)$. It is known that $\zeta_Q(s)\big(s-\frac l2\big)$ is an entire function. We treat $\Omega$-theorems for $\zeta_Q(s)l\leq3)$ and for some $\zeta_Q(s)(l=2)$. Let $l\leq4$ and $F_Q(s)=\zeta_Q\big(s+\frac l2-1\big)$. As $t$ tends to infinity, we have $$ \log\bigg|F_Q\biggl(\frac12+it\biggr)\bigg|=\Omega_+\bigg(\bigg(\frac{\log t}{\log\log t}\bigg)^{1/2}\bigg), $$ and $$ \log |F_Q(\sigma_0+it)|=\Omega_+\bigg(\frac{(\log t)^{1-\sigma_0}}{\log\log t}\bigg) $$ for fixed $\sigma_0\in\big(\frac12,1\big)$.
@article{ZNSL_2016_445_a5,
     author = {O. M. Fomenko},
     title = {Extreme values of {Epstein} zeta-functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {250--267},
     year = {2016},
     volume = {445},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/}
}
TY  - JOUR
AU  - O. M. Fomenko
TI  - Extreme values of Epstein zeta-functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 250
EP  - 267
VL  - 445
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/
LA  - ru
ID  - ZNSL_2016_445_a5
ER  - 
%0 Journal Article
%A O. M. Fomenko
%T Extreme values of Epstein zeta-functions
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 250-267
%V 445
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/
%G ru
%F ZNSL_2016_445_a5
O. M. Fomenko. Extreme values of Epstein zeta-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/

[1] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci. (Math. Sci.), 106:3 (1996), 217–226 | DOI | MR | Zbl

[2] W. Müller, “The mean square of automorphic forms”, Monatsh. Math., 113 (1992), 121–159 | DOI | MR | Zbl

[3] O. M. Fomenko, “O dzeta-funktsii Epshteina. II”, Zap. nauchn. semin. POMI, 371, 2009, 157–170 | MR | Zbl

[4] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn. revised by D. R. Heath-Brown, New York, 1986 | MR

[5] K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$”, J. London Math. Soc. (2), 8 (1974), 683–690 | DOI | MR | Zbl

[6] R. Balasubramanian, K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $(\zeta(s)$. III”, Proc. Indian Acad. Sci., 86A (1977), 341–351 | MR | Zbl

[7] A. Z. Valfish, Tselye tochki v mnogomernykh sharakh, Tbilisi, 1959 | MR

[8] H. D. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR

[9] G. Pall, A. E. Ross, “The extension of a problem of Kloosterman”, Amer. J. Math., 68 (1946), 59–65 | DOI | MR | Zbl

[10] A. V. Malyshev, “O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami”, Trudy mat. in-ta im. V. A. Steklova, 65, 1962, 3–212 | MR | Zbl

[11] O. M. Fomenko, “Ekstremalnye znacheniya avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 404, 2012, 233–247 | MR

[12] A. Ivić, The Riemann zeta-function, New York, 1985 | MR

[13] W. Duke, R. Schulze-Pillot, “Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids”, Invent. Math., 99:1 (1990), 49–57 | DOI | MR | Zbl

[14] G. A. Lomadze, “O predstavlenii chisel polozhitelnymi ternarnymi diagonalnymi kvadratichnymi formami. I”, Acta Arithm., 19:3 (1971), 267–305 | MR | Zbl

[15] T. V. Venkhvadze, “O predstavlenii chisel polozhitelnymi binarnymi kvadratichnymi formami nechetnogo diskriminanta”, Trudy Tbilis. mat. in-ta, 45, 1974, 5–40

[16] G. A. Lomadze, “O predstavlenii chisel polozhitelnymi binarnymi diagonalnymi kvadratichnymi formami”, Mat. sb., 68(110):2 (1965), 282–312 | MR | Zbl

[17] P. Kaplan, K. S. Williams, “On the number of representations of a positive integer by a binary quadratic forms”, Acta Arithm., 114:1 (2004), 87–98 | DOI | MR | Zbl