@article{ZNSL_2016_445_a5,
author = {O. M. Fomenko},
title = {Extreme values of {Epstein} zeta-functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {250--267},
year = {2016},
volume = {445},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/}
}
O. M. Fomenko. Extreme values of Epstein zeta-functions. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 250-267. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a5/
[1] K. Ramachandra, A. Sankaranarayanan, “Hardy's theorem for zeta-functions of quadratic forms”, Proc. Indian Acad. Sci. (Math. Sci.), 106:3 (1996), 217–226 | DOI | MR | Zbl
[2] W. Müller, “The mean square of automorphic forms”, Monatsh. Math., 113 (1992), 121–159 | DOI | MR | Zbl
[3] O. M. Fomenko, “O dzeta-funktsii Epshteina. II”, Zap. nauchn. semin. POMI, 371, 2009, 157–170 | MR | Zbl
[4] E. C. Titchmarsh, The theory of the Riemann zeta-function, 2nd edn. revised by D. R. Heath-Brown, New York, 1986 | MR
[5] K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $\zeta(s)$”, J. London Math. Soc. (2), 8 (1974), 683–690 | DOI | MR | Zbl
[6] R. Balasubramanian, K. Ramachandra, “On the frequency of Titchmarsh's phenomenon for $(\zeta(s)$. III”, Proc. Indian Acad. Sci., 86A (1977), 341–351 | MR | Zbl
[7] A. Z. Valfish, Tselye tochki v mnogomernykh sharakh, Tbilisi, 1959 | MR
[8] H. D. Kloosterman, “On the representation of numbers in the form $ax^2+by^2+cz^2+dt^2$”, Acta Math., 49 (1926), 407–464 | DOI | MR
[9] G. Pall, A. E. Ross, “The extension of a problem of Kloosterman”, Amer. J. Math., 68 (1946), 59–65 | DOI | MR | Zbl
[10] A. V. Malyshev, “O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami”, Trudy mat. in-ta im. V. A. Steklova, 65, 1962, 3–212 | MR | Zbl
[11] O. M. Fomenko, “Ekstremalnye znacheniya avtomorfnykh $L$-funktsii”, Zap. nauchn. semin. POMI, 404, 2012, 233–247 | MR
[12] A. Ivić, The Riemann zeta-function, New York, 1985 | MR
[13] W. Duke, R. Schulze-Pillot, “Representation of integers by positive ternary quadratic forms and equidistribution of lattice points on ellipsoids”, Invent. Math., 99:1 (1990), 49–57 | DOI | MR | Zbl
[14] G. A. Lomadze, “O predstavlenii chisel polozhitelnymi ternarnymi diagonalnymi kvadratichnymi formami. I”, Acta Arithm., 19:3 (1971), 267–305 | MR | Zbl
[15] T. V. Venkhvadze, “O predstavlenii chisel polozhitelnymi binarnymi kvadratichnymi formami nechetnogo diskriminanta”, Trudy Tbilis. mat. in-ta, 45, 1974, 5–40
[16] G. A. Lomadze, “O predstavlenii chisel polozhitelnymi binarnymi diagonalnymi kvadratichnymi formami”, Mat. sb., 68(110):2 (1965), 282–312 | MR | Zbl
[17] P. Kaplan, K. S. Williams, “On the number of representations of a positive integer by a binary quadratic forms”, Acta Arithm., 114:1 (2004), 87–98 | DOI | MR | Zbl