Inner radius, polarization and circular truncation of the set
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 175-180

Voir la notice de l'article provenant de la source Math-Net.Ru

The difference of the reduced module $m(B,0)$ of an open set $B$, $0\in B$, and the reduced module $m(B_r,0)$ of its circular truncation $B_r$, where $B_r=B\cap\{|z|$, is considered. It is proved that in the case of polarization and circular symmetrization this difference does not decrease.
@article{ZNSL_2016_445_a3,
     author = {V. O. Kuznetsov},
     title = {Inner radius, polarization and circular truncation of the set},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {175--180},
     publisher = {mathdoc},
     volume = {445},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a3/}
}
TY  - JOUR
AU  - V. O. Kuznetsov
TI  - Inner radius, polarization and circular truncation of the set
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 175
EP  - 180
VL  - 445
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a3/
LA  - ru
ID  - ZNSL_2016_445_a3
ER  - 
%0 Journal Article
%A V. O. Kuznetsov
%T Inner radius, polarization and circular truncation of the set
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 175-180
%V 445
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a3/
%G ru
%F ZNSL_2016_445_a3
V. O. Kuznetsov. Inner radius, polarization and circular truncation of the set. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 175-180. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a3/