Inner radius, polarization and circular truncation of the set
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 175-180
Voir la notice de l'article provenant de la source Math-Net.Ru
The difference of the reduced module $m(B,0)$ of an open set $B$, $0\in B$, and the reduced module $m(B_r,0)$ of its circular truncation $B_r$, where $B_r=B\cap\{|z|$, is considered. It is proved that in the case of polarization and circular symmetrization this difference does not decrease.
@article{ZNSL_2016_445_a3,
author = {V. O. Kuznetsov},
title = {Inner radius, polarization and circular truncation of the set},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {175--180},
publisher = {mathdoc},
volume = {445},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a3/}
}
V. O. Kuznetsov. Inner radius, polarization and circular truncation of the set. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 175-180. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a3/