Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 33-92 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the induced tilings $\mathcal{T=T}|_\mathrm{Kr}$ of the $D$-dimensional torus $\mathbb T^D$ generated by embedded karyons $\mathrm{Kr}$. The differentiations $\sigma\colon\mathcal{T\to T}^\sigma$ are defined under which we obtaine again the induced tilings $\mathcal T^\sigma=\mathcal T|_{\mathrm{Kr}^\sigma}$ with a derivative karyon $\mathrm{Kr}^\sigma$. They are used for approximation of $0\in\mathbb T^D$ by an infinite sequence of points $x_j\equiv j\alpha\mod\mathbb Z^D$ for $j=0,1,2,\dots$, where $\alpha=(\alpha_1,\dots,\alpha_D)$ is vector whose coordinates $\alpha_1,\dots,\alpha_D$ belong to an algebraic field $\mathbb Q(\theta)$ of degree $D+1$ over the rational field $\mathbb Q$. For this purpose, we construct an infinite sequence of convex parallelohedra $T^{(i)}\subset\mathbb T^D$ for $i=0,1,2,\dots$ and define for them some natural oders $m^{(0)} Then the above parallelohedra contain a subsequence of points $\{x_{j'}\}_{j'=1}^\infty$ that give the best approximation of $0\in\mathbb T^D$.
@article{ZNSL_2016_445_a1,
     author = {V. G. Zhuravlev},
     title = {Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--92},
     year = {2016},
     volume = {445},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 33
EP  - 92
VL  - 445
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/
LA  - ru
ID  - ZNSL_2016_445_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 33-92
%V 445
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/
%G ru
%F ZNSL_2016_445_a1
V. G. Zhuravlev. Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 33-92. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/

[1] A. Ya. Khinchin, Tsepnye drobi, 4-oe izd., M., 1978 | MR

[2] M. Furukado, Sh. Ito, A. Saito, J. Tamura, Sh. Yasutomi, “A new multidimensional slow continued fraction algorithm and stepped surface”, Exper. Math., 23:4 (2014), 390–410 | DOI | MR | Zbl

[3] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98

[4] V. G. Zhuravlev, “Delyaschiesya razbieniya tora i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 440, 2015, 99–122

[5] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl

[6] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[7] V. G. Zhuravlev, “Mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 445, 2016, 93–174

[8] Z. Coelho, A. Lopes, L. F. Da Rocha, “Absolutely continuous invariant measures for a class of affine interval exchange maps”, Proc. Amer. Math. Soc., 123:1 (1995), 3533–3542 | DOI | MR | Zbl

[9] V. G. Zhuravlev, A. V. Shutov, Derivaties of circle rotations and similarity of orbits, Preprint Series, 62, Max-Planck Inst. Math., 2004, 11 pp.

[10] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii mnogomernykh torov”, Algebra i analiz (to appear) , 28 pp.

[11] V. G. Zhuravlev, Dvumernye priblizheniya kubicheskikh irratsionalnostei, 2015, (v pechati)

[12] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Math. Sem. Hamburg Univ., 1 (1921), 54–76 | DOI | MR | Zbl

[13] S. Ferenczi, “Bounded Remaider Sets”, Acta Arithm., 61:4 (1992), 319–326 | MR | Zbl

[14] S. Grepstad, N. Lev, “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geom. Funct. Analysis, 25:1 (2014), 87–133 | DOI | MR

[15] G. Rauzy, “Ensembles àrestes bornés”, Sémin. théor. nombres, Bordeaux, 1984, exp. 24 | MR

[16] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, v. 1, Sovr. probl. matem., 16, Mat. in-t RAN, M., 2012, 82–102 | DOI | Zbl

[17] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145 | MR

[18] V. G. Zhuravlev, “Mnogomernaya teorema Gekke o raspredelenii drobnykh chastei”, Algebra i analiz, 24:3 (2012), 95–130 | MR | Zbl

[19] M. Morse, C. A. Hedlund, “Symbolic Dynamics. II: Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR | Zbl

[20] V. G. Zhuravlev, “Moduli toricheskikh razbienii na mnozhestva ogranichennogo ostatka i sbalansirovannye slova”, Algebra i analiz, 24:4 (2012), 97–136 | MR | Zbl

[21] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210

[22] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR

[23] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, TEV, Vilnius, 2007, 240–254 | MR | Zbl

[24] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953

[25] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952