Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers
Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 33-92

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the induced tilings $\mathcal{T=T}|_\mathrm{Kr}$ of the $D$-dimensional torus $\mathbb T^D$ generated by embedded karyons $\mathrm{Kr}$. The differentiations $\sigma\colon\mathcal{T\to T}^\sigma$ are defined under which we obtaine again the induced tilings $\mathcal T^\sigma=\mathcal T|_{\mathrm{Kr}^\sigma}$ with a derivative karyon $\mathrm{Kr}^\sigma$. They are used for approximation of $0\in\mathbb T^D$ by an infinite sequence of points $x_j\equiv j\alpha\mod\mathbb Z^D$ for $j=0,1,2,\dots$, where $\alpha=(\alpha_1,\dots,\alpha_D)$ is vector whose coordinates $\alpha_1,\dots,\alpha_D$ belong to an algebraic field $\mathbb Q(\theta)$ of degree $D+1$ over the rational field $\mathbb Q$. For this purpose, we construct an infinite sequence of convex parallelohedra $T^{(i)}\subset\mathbb T^D$ for $i=0,1,2,\dots$ and define for them some natural oders $m^{(0)}$ Then the above parallelohedra contain a subsequence of points $\{x_{j'}\}_{j'=1}^\infty$ that give the best approximation of $0\in\mathbb T^D$.
@article{ZNSL_2016_445_a1,
     author = {V. G. Zhuravlev},
     title = {Differentiation of  induced toric tilings and multi-dimensional approximations of algebraic numbers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--92},
     publisher = {mathdoc},
     volume = {445},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Differentiation of  induced toric tilings and multi-dimensional approximations of algebraic numbers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 33
EP  - 92
VL  - 445
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/
LA  - ru
ID  - ZNSL_2016_445_a1
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Differentiation of  induced toric tilings and multi-dimensional approximations of algebraic numbers
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 33-92
%V 445
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/
%G ru
%F ZNSL_2016_445_a1
V. G. Zhuravlev. Differentiation of  induced toric tilings and multi-dimensional approximations of algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 33-92. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/