@article{ZNSL_2016_445_a1,
author = {V. G. Zhuravlev},
title = {Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--92},
year = {2016},
volume = {445},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/}
}
V. G. Zhuravlev. Differentiation of induced toric tilings and multi-dimensional approximations of algebraic numbers. Zapiski Nauchnykh Seminarov POMI, Analytical theory of numbers and theory of functions. Part 31, Tome 445 (2016), pp. 33-92. http://geodesic.mathdoc.fr/item/ZNSL_2016_445_a1/
[1] A. Ya. Khinchin, Tsepnye drobi, 4-oe izd., M., 1978 | MR
[2] M. Furukado, Sh. Ito, A. Saito, J. Tamura, Sh. Yasutomi, “A new multidimensional slow continued fraction algorithm and stepped surface”, Exper. Math., 23:4 (2014), 390–410 | DOI | MR | Zbl
[3] V. G. Zhuravlev, “Dvumernye priblizheniya metodom delyaschikhsya toricheskikh razbienii”, Zap. nauchn. semin. POMI, 440, 2015, 81–98
[4] V. G. Zhuravlev, “Delyaschiesya razbieniya tora i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 440, 2015, 99–122
[5] G. Rauzy, “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110 (1982), 147–178 | MR | Zbl
[6] V. G. Zhuravlev, “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 322, 2005, 83–106 | MR | Zbl
[7] V. G. Zhuravlev, “Mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 445, 2016, 93–174
[8] Z. Coelho, A. Lopes, L. F. Da Rocha, “Absolutely continuous invariant measures for a class of affine interval exchange maps”, Proc. Amer. Math. Soc., 123:1 (1995), 3533–3542 | DOI | MR | Zbl
[9] V. G. Zhuravlev, A. V. Shutov, Derivaties of circle rotations and similarity of orbits, Preprint Series, 62, Max-Planck Inst. Math., 2004, 11 pp.
[10] V. G. Zhuravlev, “Differentsirovanie indutsirovannykh razbienii mnogomernykh torov”, Algebra i analiz (to appear) , 28 pp.
[11] V. G. Zhuravlev, Dvumernye priblizheniya kubicheskikh irratsionalnostei, 2015, (v pechati)
[12] E. Hecke, “Über analytische Funktionen und die Verteilung von Zahlen mod Eins”, Math. Sem. Hamburg Univ., 1 (1921), 54–76 | DOI | MR | Zbl
[13] S. Ferenczi, “Bounded Remaider Sets”, Acta Arithm., 61:4 (1992), 319–326 | MR | Zbl
[14] S. Grepstad, N. Lev, “Sets of bounded discrepancy for multi-dimensional irrational rotation”, Geom. Funct. Analysis, 25:1 (2014), 87–133 | DOI | MR
[15] G. Rauzy, “Ensembles àrestes bornés”, Sémin. théor. nombres, Bordeaux, 1984, exp. 24 | MR
[16] V. G. Zhuravlev, “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, v. 1, Sovr. probl. matem., 16, Mat. in-t RAN, M., 2012, 82–102 | DOI | Zbl
[17] V. G. Zhuravlev, “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauchn. semin. POMI, 392, 2011, 95–145 | MR
[18] V. G. Zhuravlev, “Mnogomernaya teorema Gekke o raspredelenii drobnykh chastei”, Algebra i analiz, 24:3 (2012), 95–130 | MR | Zbl
[19] M. Morse, C. A. Hedlund, “Symbolic Dynamics. II: Sturmian trajectories”, Amer. J. Math., 62 (1940), 1–42 | DOI | MR | Zbl
[20] V. G. Zhuravlev, “Moduli toricheskikh razbienii na mnozhestva ogranichennogo ostatka i sbalansirovannye slova”, Algebra i analiz, 24:4 (2012), 97–136 | MR | Zbl
[21] V. G. Zhuravlev, A. V. Maleev, “Posloinyi rost kvaziperiodicheskogo razbieniya Rozi”, Kristallografiya, 52:2 (2007), 204–210
[22] A. V. Shutov, A. V. Maleev, V. G. Zhuravlev, “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr., A66 (2010), 427–437 | DOI | MR
[23] V. G. Zhuravlev, “On additive property of a complexity function related to Rauzy tiling”, Anal. Probab. Methods Number Theory, TEV, Vilnius, 2007, 240–254 | MR | Zbl
[24] E. S. Fedorov, Nachala ucheniya o figurakh, M., 1953
[25] G. F. Voronoi, Sobranie sochinenii, v. 2, Kiev, 1952