Proof of Schauder estimates for parabolic initial-boundary value model problems via O.\,A.~Ladyzhenskaya's Fourier multipliers theorem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 133-156

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is concerned with estimates of the Hölder norms of solutions of model parabolic initial-boundary value problems in a half-space. The proof is based on the theorem on the Fourier multipliers in anisotropic Hölder spaces due to O. A. Ladyzhenskaya and on K. K. Golovkin's theorem on equivalent norms in these spaces.
@article{ZNSL_2016_444_a7,
     author = {V. A. Solonnikov},
     title = {Proof of {Schauder} estimates for parabolic initial-boundary value model problems via {O.\,A.~Ladyzhenskaya's} {Fourier} multipliers theorem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--156},
     publisher = {mathdoc},
     volume = {444},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a7/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - Proof of Schauder estimates for parabolic initial-boundary value model problems via O.\,A.~Ladyzhenskaya's Fourier multipliers theorem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 133
EP  - 156
VL  - 444
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a7/
LA  - en
ID  - ZNSL_2016_444_a7
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T Proof of Schauder estimates for parabolic initial-boundary value model problems via O.\,A.~Ladyzhenskaya's Fourier multipliers theorem
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 133-156
%V 444
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a7/
%G en
%F ZNSL_2016_444_a7
V. A. Solonnikov. Proof of Schauder estimates for parabolic initial-boundary value model problems via O.\,A.~Ladyzhenskaya's Fourier multipliers theorem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 133-156. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a7/