Remark on Wolf's condition for boundary regularity of Navier–Stokes equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 124-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We prove Wolf's regularity condition up to the boundary for solutions to the Navier–Stokes equations satisfying non-slip boundary condition.
@article{ZNSL_2016_444_a6,
     author = {G. Seregin},
     title = {Remark on {Wolf's} condition for boundary regularity of {Navier{\textendash}Stokes} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {124--132},
     year = {2016},
     volume = {444},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a6/}
}
TY  - JOUR
AU  - G. Seregin
TI  - Remark on Wolf's condition for boundary regularity of Navier–Stokes equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 124
EP  - 132
VL  - 444
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a6/
LA  - en
ID  - ZNSL_2016_444_a6
ER  - 
%0 Journal Article
%A G. Seregin
%T Remark on Wolf's condition for boundary regularity of Navier–Stokes equations
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 124-132
%V 444
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a6/
%G en
%F ZNSL_2016_444_a6
G. Seregin. Remark on Wolf's condition for boundary regularity of Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 124-132. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a6/

[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl

[2] W. Kukavica, W. Rusin, M. Ziane, An anisotropic partial regularity criterion for the Navier–Stokes equations, arXiv: 1511.02807

[3] J. Math. Sci. (N.Y.), 178:3 (2011), 282–291 | DOI | MR

[4] J. Math. Sci. (N.Y.), 115:6 (2003), 2820–2831 | DOI | MR | Zbl

[5] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. math. fluid mech., 4:1 (2002), 1–29 | DOI | MR | Zbl

[6] Russian Math. Surveys, 62:3 (2007), 595–614 | DOI | DOI | MR | Zbl

[7] J. Math. Sci. (N.Y.), 166:1 (2010), 86–90 | DOI | MR | Zbl

[8] W. Wang, Z. Zhang, “On the interior regularity criteria and the number of singular points to the Navier–Stokes equations”, J. d'Analyse Math., 123:1 (2014), 139–170 | DOI | MR | Zbl

[9] J. Wolf, “A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations”, Advances in mathematical fluid mechanics, Springer, Berlin, 2010, 613–630 | MR