@article{ZNSL_2016_444_a6,
author = {G. Seregin},
title = {Remark on {Wolf's} condition for boundary regularity of {Navier{\textendash}Stokes} equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {124--132},
year = {2016},
volume = {444},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a6/}
}
G. Seregin. Remark on Wolf's condition for boundary regularity of Navier–Stokes equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 124-132. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a6/
[1] L. Caffarelli, R.-V. Kohn, L. Nirenberg, “Partial regularity of suitable weak solutions of the Navier–Stokes equations”, Comm. Pure Appl. Math., 35 (1982), 771–831 | DOI | MR | Zbl
[2] W. Kukavica, W. Rusin, M. Ziane, An anisotropic partial regularity criterion for the Navier–Stokes equations, arXiv: 1511.02807
[3] J. Math. Sci. (N.Y.), 178:3 (2011), 282–291 | DOI | MR
[4] J. Math. Sci. (N.Y.), 115:6 (2003), 2820–2831 | DOI | MR | Zbl
[5] G. A. Seregin, “Local regularity of suitable weak solutions to the Navier–Stokes equations near the boundary”, J. math. fluid mech., 4:1 (2002), 1–29 | DOI | MR | Zbl
[6] Russian Math. Surveys, 62:3 (2007), 595–614 | DOI | DOI | MR | Zbl
[7] J. Math. Sci. (N.Y.), 166:1 (2010), 86–90 | DOI | MR | Zbl
[8] W. Wang, Z. Zhang, “On the interior regularity criteria and the number of singular points to the Navier–Stokes equations”, J. d'Analyse Math., 123:1 (2014), 139–170 | DOI | MR | Zbl
[9] J. Wolf, “A new criterion for partial regularity of suitable weak solutions to the Navier–Stokes equations”, Advances in mathematical fluid mechanics, Springer, Berlin, 2010, 613–630 | MR