On variational representations of the constant in the inf sup condition for the Stokes problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 110-123

Voir la notice de l'article provenant de la source Math-Net.Ru

We deduce variational representations of the constant $c_\Omega$ in the inf sup condition for the Stokes problem in a bounded Lipschitz domain in $\mathbb R^d$, $d\geq2$. For any pair of admissible functions the respective variational functional provides an upper bound of $c_\Omega$ and the exact infimum of it is equal to $c_\Omega$. Minimization of the functionals over suitable finite dimensional subspaces generates monotonically decreasing sequences of numbers converging to $c_\Omega$ and, therefore, they can be used for numerical evaluation of the constant.
@article{ZNSL_2016_444_a5,
     author = {S. Repin},
     title = {On variational representations of the constant in the inf sup condition for the {Stokes} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--123},
     publisher = {mathdoc},
     volume = {444},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/}
}
TY  - JOUR
AU  - S. Repin
TI  - On variational representations of the constant in the inf sup condition for the Stokes problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 110
EP  - 123
VL  - 444
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/
LA  - en
ID  - ZNSL_2016_444_a5
ER  - 
%0 Journal Article
%A S. Repin
%T On variational representations of the constant in the inf sup condition for the Stokes problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 110-123
%V 444
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/
%G en
%F ZNSL_2016_444_a5
S. Repin. On variational representations of the constant in the inf sup condition for the Stokes problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 110-123. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/