On variational representations of the constant in the inf sup condition for the Stokes problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 110-123
Voir la notice de l'article provenant de la source Math-Net.Ru
We deduce variational representations of the constant $c_\Omega$ in the inf sup condition for the Stokes problem in a bounded Lipschitz domain in $\mathbb R^d$, $d\geq2$. For any pair of admissible functions the respective variational functional provides an upper bound of $c_\Omega$ and the exact infimum of it is equal to $c_\Omega$. Minimization of the functionals over suitable finite dimensional subspaces generates monotonically decreasing sequences of numbers converging to $c_\Omega$ and, therefore, they can be used for numerical evaluation of the constant.
@article{ZNSL_2016_444_a5,
author = {S. Repin},
title = {On variational representations of the constant in the inf sup condition for the {Stokes} problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {110--123},
publisher = {mathdoc},
volume = {444},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/}
}
TY - JOUR AU - S. Repin TI - On variational representations of the constant in the inf sup condition for the Stokes problem JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 110 EP - 123 VL - 444 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/ LA - en ID - ZNSL_2016_444_a5 ER -
S. Repin. On variational representations of the constant in the inf sup condition for the Stokes problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 110-123. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/