On variational representations of the constant in the inf sup condition for the Stokes problem
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 110-123 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We deduce variational representations of the constant $c_\Omega$ in the inf sup condition for the Stokes problem in a bounded Lipschitz domain in $\mathbb R^d$, $d\geq2$. For any pair of admissible functions the respective variational functional provides an upper bound of $c_\Omega$ and the exact infimum of it is equal to $c_\Omega$. Minimization of the functionals over suitable finite dimensional subspaces generates monotonically decreasing sequences of numbers converging to $c_\Omega$ and, therefore, they can be used for numerical evaluation of the constant.
@article{ZNSL_2016_444_a5,
     author = {S. Repin},
     title = {On variational representations of the constant in the inf sup condition for the {Stokes} problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {110--123},
     year = {2016},
     volume = {444},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/}
}
TY  - JOUR
AU  - S. Repin
TI  - On variational representations of the constant in the inf sup condition for the Stokes problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 110
EP  - 123
VL  - 444
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/
LA  - en
ID  - ZNSL_2016_444_a5
ER  - 
%0 Journal Article
%A S. Repin
%T On variational representations of the constant in the inf sup condition for the Stokes problem
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 110-123
%V 444
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/
%G en
%F ZNSL_2016_444_a5
S. Repin. On variational representations of the constant in the inf sup condition for the Stokes problem. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 110-123. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a5/

[1] I. Babuška, A. K. Aziz, Survay lectures on the mathematical foundations of the finite element method, Academic Press, New York, 1972 | MR

[2] M. Costabel, M. Dauge., On the inequalities of Babuška–Aziz, Friedrichs and Horgan–Payne, 2013, arXiv: 1303.6141v1 | MR

[3] M. Costabel, M. Crouzeix, M. Dauge, Y. Lafranche, “The inf-sup constant for the divergence on corner domains”, Num. Meth. for Partial Diff. Eq., 31:2 (2015), 439–458 | DOI | MR | Zbl

[4] M. Dobrowolski, “On the LBB constant on stretched domains”, Math. Nachr., 254–255 (2003), 64–67 | DOI | MR | Zbl

[5] C. Horgan, L. Payne, “On inequalities of Korn, Friedrichs and Babuska–Aziz”, Arch. Ration. Mech. Anal., 82 (1983), 165–179 | DOI | MR | Zbl

[6] M. Kessler, Die Ladyzhenskaya–Konstante in der numerischen Behand- lung von Strömungsproblemen Dissertation zur Erlangung des naturwissenschaftlichen, Doktorgrades, Bayerischen Julius-Maximilians-Universität Würzburg, 2000

[7] O. A. Ladyzhenskaya, Mathematical Problems in the Dynamics of a Viscous Incompressible Flow, second ed., Gordon and Breach, New York, 1969 | MR

[8] O. A. Ladyzenskaja, V. A. Solonnikov, “Some problems of vector analysis, and generalized formulations of boundary value problems for the Navier-Stokes equation”, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 59, 1976, 81–116 (Russian) | MR | Zbl

[9] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson et Cie, Éditeurs, Paris; Academia, Éditeurs, Prague, 1967 | MR

[10] M. A. Olshanskii, E. V. Chizhonkov, “On the best constant in the $inf\,sup$ condition for prolonged rectangular domains”, Mat. Zametki, 67:3 (2000), 387–396 (Russian) | DOI | MR | Zbl

[11] L. E. Payne, “A bound for the optimal constant in an inequality of Ladyzhenskaya and Solonnikov”, IMA J. Appl. Math., 72 (2007), 563–569 | DOI | MR | Zbl

[12] S. Repin, “Aposteriori estimates for the Stokes problem”, J. Math. Sci. (New York), 109:5 (2002), 1950–1964 | DOI | MR | Zbl

[13] S. Repin, “Estimates of deviations from exact solutions for some boundary-value problems with incompressibility condition”, Algebra i Analiz, 16:5 (2004), 124–161 | MR | Zbl

[14] S. Repin, A Posteriori Estimates for Fartial Differential Equations, Walter de Gruyter, Berlin, 2008 | MR

[15] S. Repin, “Estimates of deviations from exact solution of the generalized Oseen problem”, Zap. Nauchn. Semin. POMI, 410, 2013, 110–130 | MR | Zbl

[16] S. Repin, “Estimates of the distance to the set of divergence free fields”, Zap. Nauchn. Semin. POMI, 425, 2014, 99–116 | MR

[17] S. Repin, “Estimates of the distance to the set of solenoidal vector fields and applications to a posteriori error control”, Computational Methods in Applied Mathematics, 15:4 (2015), 515–530 | DOI | MR | Zbl

[18] G. Stoyan, “Towards discrete Velte decompositions and narrow bounds for Inf-Sup constants”, Comput. Math. Appl., 38 (1999), 243–261 | DOI | MR | Zbl

[19] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland, Amsterdam, 1979 | MR | Zbl