The multiplicity of positive solutions to the quasilinear equation generated by the Il'in--Caffarelli--Kohn--Nirenberg inequality
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 98-109
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Euler–Lagrange equation for the functional related to the V. P. Il'in inequality also known as the Caffarelli–Kohn–Nirenberg inequality. We prove that if the space dimension is even then, changing some
parameters, we can obtain arbitrary many different positive solutions for this equation.
@article{ZNSL_2016_444_a4,
author = {A. I. Nazarov and B. O. Neterebskii},
title = {The multiplicity of positive solutions to the quasilinear equation generated by the {Il'in--Caffarelli--Kohn--Nirenberg} inequality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--109},
publisher = {mathdoc},
volume = {444},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/}
}
TY - JOUR AU - A. I. Nazarov AU - B. O. Neterebskii TI - The multiplicity of positive solutions to the quasilinear equation generated by the Il'in--Caffarelli--Kohn--Nirenberg inequality JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 98 EP - 109 VL - 444 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/ LA - ru ID - ZNSL_2016_444_a4 ER -
%0 Journal Article %A A. I. Nazarov %A B. O. Neterebskii %T The multiplicity of positive solutions to the quasilinear equation generated by the Il'in--Caffarelli--Kohn--Nirenberg inequality %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 98-109 %V 444 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/ %G ru %F ZNSL_2016_444_a4
A. I. Nazarov; B. O. Neterebskii. The multiplicity of positive solutions to the quasilinear equation generated by the Il'in--Caffarelli--Kohn--Nirenberg inequality. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 98-109. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/