The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 98-109 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Euler–Lagrange equation for the functional related to the V. P. Il'in inequality also known as the Caffarelli–Kohn–Nirenberg inequality. We prove that if the space dimension is even then, changing some parameters, we can obtain arbitrary many different positive solutions for this equation.
@article{ZNSL_2016_444_a4,
     author = {A. I. Nazarov and B. O. Neterebskii},
     title = {The multiplicity of positive solutions to the quasilinear equation generated by the {Il'in{\textendash}Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequality},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {98--109},
     year = {2016},
     volume = {444},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/}
}
TY  - JOUR
AU  - A. I. Nazarov
AU  - B. O. Neterebskii
TI  - The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 98
EP  - 109
VL  - 444
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/
LA  - ru
ID  - ZNSL_2016_444_a4
ER  - 
%0 Journal Article
%A A. I. Nazarov
%A B. O. Neterebskii
%T The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 98-109
%V 444
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/
%G ru
%F ZNSL_2016_444_a4
A. I. Nazarov; B. O. Neterebskii. The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 98-109. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/

[1] A. I. Enin, A. I. Nazarov, “Mnozhestvennost reshenii kvazilineinoi zadachi Neimana v trekhmernom sluchae”, Probl. mat. analiza, 78, 2015, 85–94 | Zbl

[2] V. P. Ilin, “Nekotorye integralnye neravenstva i ikh primeneniya v teorii differentsiruemykh funktsii mnogikh peremennykh”, Mat. sb., 54(96):3 (1961), 331–380 | MR | Zbl

[3] S. B. Kolonitskii, “Mnozhestvennost reshenii zadachi Dirikhle dlya uravneniya s $p$-laplasianom v trekhmernom sfericheskom sloe”, Algebra i analiz, 22:3 (2010), 206–221 | MR | Zbl

[4] A. I. Nazarov, “O resheniyakh zadachi Dirikhle dlya uravneniya, vklyuchayuschego $p$-laplasian, v sfericheskom sloe”, Trudy SPbMO, 10, 2004, 33–62

[5] A. I. Nazarov, “Neravenstva Khardi–Soboleva v konuse”, Probl. mat. analiza, 31, 2005, 39–46 | Zbl

[6] A. P. Scheglova, “Mnozhestvennost reshenii dlya kraevoi zadachi s nelineinym usloviem Neimana”, Probl. mat. analiza, 30, 2005, 121–144 | MR | Zbl

[7] J. Byeon, “Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli”, J. of Diff. Eqs., 136 (1997), 136–165 | DOI | MR | Zbl

[8] J. Byeon, Z.-Q. Wang, “Symmetry breaking of extremal functions for the Caffarelli–Kohn–Nirenberg inequalities”, Commun. Contemp. Math., 4:3 (2002), 457–465 | DOI | MR | Zbl

[9] L. Caffarelli, R. Kohn, L. Nirenberg, “First order interpolation inequalities with weights”, Compositio Math., 53:3 (1984), 259–275 | MR | Zbl

[10] P. Caldiroli, R. Musina, “On the existence of extremal functions for a weighted Sobolev embedding with critical exponent”, Calc. Var. Part. Diff. Eqs., 8:4 (1999), 365–387 | DOI | MR | Zbl

[11] P. Caldiroli, R. Musina, “Symmetry Breaking of Extremals for the Caffarelli–Kohn–Nirenberg Inequalities in a Non-Hilbertian Setting”, Milan Journal of Mathematics, 81:2 (2013), 421–430 | DOI | MR | Zbl

[12] F. Catrina, Z.-Q. Wang, “On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions”, Comm. Pure Appl. Math., 54:2 (2001), 229–258 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[13] C. V. Coffman, “A non-linear boundary value problem with many positive solutions”, J. of Diff. Eqs., 54 (1984), 429–437 | DOI | MR | Zbl

[14] J. Dolbeault, M. J. Esteban, M. Loss, Symmetry of extremals of functional inequalities via spectral estimates for linear operators, 53:9 (2012), 095204, 18 pp. | MR | Zbl

[15] J. Dolbeault, M. J. Esteban, G. Tarantello, “The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli–Kohn–Nirenberg inequalities, in two space dimensions”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7:2 (2008), 313–341 | MR | Zbl

[16] V. Felli, M. Schneider, “Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type”, J. Diff. Eqs., 191:1 (2003), 121–142 | DOI | MR | Zbl

[17] M. Gazzini, R. Musina, “On a Sobolev-type inequality related to the weighted $p$-Laplace operator”, J. Math. Anal. Appl., 352:1 (2009), 99–111 | DOI | MR | Zbl

[18] T. Horiuchi, “Best constant in weighted Sobolev inequality with weights being powers of distance from the origin”, J. Inequal. Appl., 1:3 (1997), 275–292 | MR | Zbl

[19] Y. Y. Li, “Existence of many positive solutions of semilinear elliptic equations on annulus”, J. of Diff. Eqs., 83 (1990), 348–367 | DOI | MR | Zbl

[20] P. L. Lions, “The concentration-compactness principle in the Calculus of Variations. The locally compact case. I”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1 (1984), 109–145 | MR | Zbl

[21] V. G. Maz'ya, T. O. Shaposhnikova, “A Collection of sharp dilation invariant integral inequalities for differentiable functions”, Sobolev spaces in mathematics, v. I, Int. Math. Ser. (N.Y.), 8, Springer, New York, 2008, 223–247 | DOI | MR

[22] R. S. Palais, “The principle of symmetric criticality”, Comm. in Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl

[23] D. Smets, M. Willem, “Partial symmetry and asymptotic behavior for some elliptic variational problems”, Calc. Var. Part. Diff. Eqs., 18:1 (2003), 57–75 | DOI | MR | Zbl

[24] N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. in Pure and Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl