@article{ZNSL_2016_444_a4,
author = {A. I. Nazarov and B. O. Neterebskii},
title = {The multiplicity of positive solutions to the quasilinear equation generated by the {Il'in{\textendash}Caffarelli{\textendash}Kohn{\textendash}Nirenberg} inequality},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {98--109},
year = {2016},
volume = {444},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/}
}
TY - JOUR AU - A. I. Nazarov AU - B. O. Neterebskii TI - The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 98 EP - 109 VL - 444 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/ LA - ru ID - ZNSL_2016_444_a4 ER -
%0 Journal Article %A A. I. Nazarov %A B. O. Neterebskii %T The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 98-109 %V 444 %U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/ %G ru %F ZNSL_2016_444_a4
A. I. Nazarov; B. O. Neterebskii. The multiplicity of positive solutions to the quasilinear equation generated by the Il'in–Caffarelli–Kohn–Nirenberg inequality. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 98-109. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a4/
[1] A. I. Enin, A. I. Nazarov, “Mnozhestvennost reshenii kvazilineinoi zadachi Neimana v trekhmernom sluchae”, Probl. mat. analiza, 78, 2015, 85–94 | Zbl
[2] V. P. Ilin, “Nekotorye integralnye neravenstva i ikh primeneniya v teorii differentsiruemykh funktsii mnogikh peremennykh”, Mat. sb., 54(96):3 (1961), 331–380 | MR | Zbl
[3] S. B. Kolonitskii, “Mnozhestvennost reshenii zadachi Dirikhle dlya uravneniya s $p$-laplasianom v trekhmernom sfericheskom sloe”, Algebra i analiz, 22:3 (2010), 206–221 | MR | Zbl
[4] A. I. Nazarov, “O resheniyakh zadachi Dirikhle dlya uravneniya, vklyuchayuschego $p$-laplasian, v sfericheskom sloe”, Trudy SPbMO, 10, 2004, 33–62
[5] A. I. Nazarov, “Neravenstva Khardi–Soboleva v konuse”, Probl. mat. analiza, 31, 2005, 39–46 | Zbl
[6] A. P. Scheglova, “Mnozhestvennost reshenii dlya kraevoi zadachi s nelineinym usloviem Neimana”, Probl. mat. analiza, 30, 2005, 121–144 | MR | Zbl
[7] J. Byeon, “Existence of many nonequivalent nonradial positive solutions of semilinear elliptic equations on three-dimensional annuli”, J. of Diff. Eqs., 136 (1997), 136–165 | DOI | MR | Zbl
[8] J. Byeon, Z.-Q. Wang, “Symmetry breaking of extremal functions for the Caffarelli–Kohn–Nirenberg inequalities”, Commun. Contemp. Math., 4:3 (2002), 457–465 | DOI | MR | Zbl
[9] L. Caffarelli, R. Kohn, L. Nirenberg, “First order interpolation inequalities with weights”, Compositio Math., 53:3 (1984), 259–275 | MR | Zbl
[10] P. Caldiroli, R. Musina, “On the existence of extremal functions for a weighted Sobolev embedding with critical exponent”, Calc. Var. Part. Diff. Eqs., 8:4 (1999), 365–387 | DOI | MR | Zbl
[11] P. Caldiroli, R. Musina, “Symmetry Breaking of Extremals for the Caffarelli–Kohn–Nirenberg Inequalities in a Non-Hilbertian Setting”, Milan Journal of Mathematics, 81:2 (2013), 421–430 | DOI | MR | Zbl
[12] F. Catrina, Z.-Q. Wang, “On the Caffarelli–Kohn–Nirenberg inequalities: sharp constants, existence (and nonexistence), and symmetry of extremal functions”, Comm. Pure Appl. Math., 54:2 (2001), 229–258 | 3.0.CO;2-I class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[13] C. V. Coffman, “A non-linear boundary value problem with many positive solutions”, J. of Diff. Eqs., 54 (1984), 429–437 | DOI | MR | Zbl
[14] J. Dolbeault, M. J. Esteban, M. Loss, Symmetry of extremals of functional inequalities via spectral estimates for linear operators, 53:9 (2012), 095204, 18 pp. | MR | Zbl
[15] J. Dolbeault, M. J. Esteban, G. Tarantello, “The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli–Kohn–Nirenberg inequalities, in two space dimensions”, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7:2 (2008), 313–341 | MR | Zbl
[16] V. Felli, M. Schneider, “Perturbation results of critical elliptic equations of Caffarelli–Kohn–Nirenberg type”, J. Diff. Eqs., 191:1 (2003), 121–142 | DOI | MR | Zbl
[17] M. Gazzini, R. Musina, “On a Sobolev-type inequality related to the weighted $p$-Laplace operator”, J. Math. Anal. Appl., 352:1 (2009), 99–111 | DOI | MR | Zbl
[18] T. Horiuchi, “Best constant in weighted Sobolev inequality with weights being powers of distance from the origin”, J. Inequal. Appl., 1:3 (1997), 275–292 | MR | Zbl
[19] Y. Y. Li, “Existence of many positive solutions of semilinear elliptic equations on annulus”, J. of Diff. Eqs., 83 (1990), 348–367 | DOI | MR | Zbl
[20] P. L. Lions, “The concentration-compactness principle in the Calculus of Variations. The locally compact case. I”, Ann. Inst. H. Poincaré. Anal. Non Linéaire, 1 (1984), 109–145 | MR | Zbl
[21] V. G. Maz'ya, T. O. Shaposhnikova, “A Collection of sharp dilation invariant integral inequalities for differentiable functions”, Sobolev spaces in mathematics, v. I, Int. Math. Ser. (N.Y.), 8, Springer, New York, 2008, 223–247 | DOI | MR
[22] R. S. Palais, “The principle of symmetric criticality”, Comm. in Math. Phys., 69 (1979), 19–30 | DOI | MR | Zbl
[23] D. Smets, M. Willem, “Partial symmetry and asymptotic behavior for some elliptic variational problems”, Calc. Var. Part. Diff. Eqs., 18:1 (2003), 57–75 | DOI | MR | Zbl
[24] N. S. Trudinger, “On Harnack type inequalities and their application to quasilinear elliptic equations”, Comm. in Pure and Appl. Math., 20 (1967), 721–747 | DOI | MR | Zbl