@article{ZNSL_2016_444_a2,
author = {M. Bildhauer and M. Fuchs and J. Weickert},
title = {An alternative approach towards the higher order denoising of images. {Analytical} aspects},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {47--88},
year = {2016},
volume = {444},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/}
}
TY - JOUR AU - M. Bildhauer AU - M. Fuchs AU - J. Weickert TI - An alternative approach towards the higher order denoising of images. Analytical aspects JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 47 EP - 88 VL - 444 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/ LA - en ID - ZNSL_2016_444_a2 ER -
M. Bildhauer; M. Fuchs; J. Weickert. An alternative approach towards the higher order denoising of images. Analytical aspects. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 47-88. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/
[1] R. Acar, C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl
[2] R. A. Adams, Sobolev Spaces, Academic Press, San Diego, 1975 | MR | Zbl
[3] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon, Oxford, 2000 | MR | Zbl
[4] G. Aubert, L. Vese, “A variational method in image recovery”, SIAM J. Numer. Anal., 34:5 (1997), 1948–1979 | DOI | MR | Zbl
[5] G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York, 2006 | MR | Zbl
[6] P. N. Belhumeur, “A binocular stereo algorithm for reconstructing sloping, creased, and broken surfaces in the presence of half-occlusion”, Proc. Fourth International Conference on Computer Vision (Berlin, May 1993), IEEE Computer Society Press, 431–438
[7] M. Bildhauer, Convex variational problems: linear, nearly linear and anisotropic growth conditions, Lect. Notes Math., 1818, Springer, Berlin–Heidelberg–New York, 2003 | DOI | MR | Zbl
[8] M. Bildhauer, M. Fuchs, “Twodimensional anisotropic variational problems.”, Calc. Variations, 16 (2003), 177–186 | MR | Zbl
[9] M. Bildhauer, M. Fuchs, “A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim., 66:3 (2012), 331–361 | DOI | MR | Zbl
[10] M. Bildhauer, M. Fuchs, “On some pertubations of the total variation image inpainting method. Part I: regularity theory”, J. Math. Sciences, 202:2 (2013), 154–169 | DOI | MR
[11] M. Bildhauer, M. Fuchs, C. Tietz, “$C^{1,\alpha}$-interior regularity for minimizers of a class of variational problems related to image inpainting”, Algebra Analiz, 27:3 (2015), 51–65
[12] M. Bildhauer, M. Fuchs, X. Zhong, “A lemma on the higher integrability of functions with applications to the regularity theory of two dimensional generalized Newtonian fluids”, Manus. Math., 116:2 (2005), 135–156 | DOI | MR | Zbl
[13] P. Blomgren, T. F. Chan, P. Mulet, L. Vese, W. L. Wan, “Variational PDE models and methods for image processing”, Numerical Analysis 1999 (Dundee), Chapman Hall/CRC Res. Notes Math., 420, Chapman Hall/CRC, Boca Raton, FL, 2000, 43–67 | MR | Zbl
[14] K. Bredies, K. Kunisch, T. Pock, “Total generalized variation”, SIAM J. Imaging Sci., 3 (2010), 492–526 | DOI | MR | Zbl
[15] K. Bredies, K. Kunisch, T. Valkonen, “Properties of $L^1$-TVG$^2$: The one-dimensional case”, J. Math. Analysis Appl., 398 (2013), 438–454 | DOI | MR | Zbl
[16] K. Bredies, T. Valkonen, “Inverse problems with second-order total generalized variation constraints”, Proc. 9th International Conference on Sampling Theory and Applications, Singapore, 2011
[17] C. Brito-Loeza, K. Chen, “On high-order denoising models and fast algorithms for vector-valued images”, IEEE Transactions on Image Processing, 19 (2010), 1518–1526 | DOI | MR
[18] M. Burger, K. Papafitsoros, E. Papoutsellis, C.-B. Schönlieb, Infimal convolution regularisation functionals of $BV$ and $L^p$ spaces. Part I: The finite $p$ case, April 2015, arXiv: ; Journal of Mathematical Imaging and Vision (to appear) 1504.01956[math.NA] | MR
[19] M. Burger, K. Papafitsoros, E. Papoutsellis, C.-B. Schönlieb, Infimal convolution regularisation functionals of $BV$ and $L^p$ spaces. The case $p=\infty$, Oct. 2015, arXiv: 1510.09032[math.NA] | MR
[20] V. Caselles, A. Chambolle, M. Novaga, “Regularity for solutions of the total variation denoising problem”, Rev. Mat. Iberoam., 27 (2011), 233–252 | DOI | MR | Zbl
[21] A. Chambolle, P.-L. Lions, “Image recovery via total variation minimization and related problems”, Numer. Math., 76 (1997), 167–188 | DOI | MR | Zbl
[22] T. F. Chan, S. Esedoglu, F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, Technical Report CAM-05-28, Dept. of Mathematics, University of California at Los Angeles, LA, 2005
[23] T. Chan, J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia, 2005 | MR | Zbl
[24] Y. Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66 (2006), 1383–1406 | DOI | MR | Zbl
[25] E. Di Benedetto, “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7 (1983), 827–850 | DOI | MR
[26] S. Didas, J. Weickert, B. Burgeth, “Properties of higher order nonlinear diffusion filtering”, J. Math. Imaging Vision, 35 (2009), 208–226 | DOI | MR
[27] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, H. Bischof, “Image guided depth upsampling using anisotropic total generalized variation”, Proc. International Conference on Computer Vision, Sydney, Australia, Dec. 2013, 993–1000
[28] J. Frehse, “Two dimensional variational problems with thin obstacles”, Math. Z., 143 (1975), 279–288 | DOI | MR | Zbl
[29] J. Frehse, G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening”, Transl. Am. Math. Soc., 193 (1999), 127–152 | MR
[30] M. Fuchs, “Computable upper bounds for the constants in Poincarè-type inequalities for fields of bounded deformation”, Math. Meth. Appl. Sciences, 34:15 (2011), 1920–1932 | DOI | MR | Zbl
[31] M. Fuchs, S. Repin, “A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem”, Numer. Funct. Anal. Optim., 32:6 (2011), 610–640 | DOI | MR | Zbl
[32] M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., 1749, Springer, Berlin–Heidelberg, 2000 | DOI | MR | Zbl
[33] E. Giusti, Minimal Surfaces and Functions of Bounded Variation., Monographs in Mathematics, 80, Birkhäuser, Basel, 1984 | MR | Zbl
[34] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Math. Wiss., 224, 2nd edn., Springer, Berlin, 1989
[35] J. B. Greer, A. L. Bertozzi, “Traveling wave solutions of fourth order PDEs for image processing”, SIAM J. Math. Analysis, 36 (2004), 38–68 | DOI | MR | Zbl
[36] ter Haar Romeny B. M. (Ed.), Geometry-driven Diffusion in Computer Vision, Kluwer, Dordrecht, 1994 | MR | Zbl
[37] D. Hafner, C. Schroers, J. Weickert, “Introducing maximal anisotropy into second order coupling models”, Pattern Recognition, Lecture Notes in Computer Science, 9358, eds. Gall J., Gehler P., Leibe B., Springer, Berlin, 2015, 79–90 | DOI | MR
[38] A. Hewer, J. Weickert, T. Scheffer, H. Seibert, S. Diebels, “Lagrangian strain tensor computation with higher order variational models”, Proc. 24th British Machine Vision Conference, eds. Burghardt T., Damen D., Mayol-Cuevas W., Mirmehdi M., BMVA Press, Bristol, UK, Sept. 2013
[39] B. K. P. Horn, “Height and gradient from shading”, International J. Computer Vision, 5:1 (1990), 37–75 | DOI
[40] B. Kawohl, “Variational versus PDE-based approaches in mathematical image processing”, CRM Proceedings and Lecture Notes, 44 (2008), 113–126 | MR | Zbl
[41] Academic Press, New York, 1968 | Zbl | Zbl
[42] M. Lysaker, A. Lundervold, X.-C. Tai, “Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time”, IEEE Transactions on Image Processing, 12 (2003), 1579–1590 | DOI | Zbl
[43] C. B. Morrey (Jr.), Multiple integrals in the calculus of variations, Reprint of the 1966 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008 | MR | Zbl
[44] Math. UssR Sbornik, 17:2 (1972), 257–268 | DOI | MR | Zbl
[45] K. Papafitsoros, K. Bredies, “A study of the one dimensional total generalised variation regularisation problem”, Inverse Problems and Imaging, 9 (2015), 511–550 | DOI | MR | Zbl
[46] P. Perona, J. Malik, “Scale space and edge detection using anisotropic diffusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629–639 | DOI
[47] L. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D, 60 (1992), 259–268 | DOI | MR | Zbl
[48] O. Scherzer, “Denoising with higher order derivatives of bounded variation and an application to parameter estimation”, Computing, 60 (1998), 1–28 | DOI | MR
[49] S. Setzer, G. Steidl, T. Teuber, “Infimal convolution regularizations with discrete $\ell_1$-type functionals”, Communications in Mathematical Sciences, 9 (2011), 797–827 | DOI | MR | Zbl
[50] G. Strang, R. Temam, “Functions of bounded deformation”, Arch. Rat. Mech. Anal., 75 (1981), 7–21 | MR
[51] P. M. Suquet, “Sur une nouveau cadre fonctionnel pour les équations de la plasticité”, C. R. Acad. Sc. Paris (A), 286 (1978), 1129–1132 | MR | Zbl
[52] P. M. Suquet, “Un espace fonctionnel pour les équations de la plasticité”, Annales Faculté Sc. Toulouse $5^e$ sér., 1 (1979), 77–87 | DOI | MR | Zbl
[53] P. Tolksdorf, “Everywhere-regularity for some quasilinear systems with a lack of ellipticity”, Ann. Mat. Pura Appl., 134 (1983), 241–266 | DOI | MR | Zbl
[54] L. Vese, “A study in the $\mathrm{BV}$ space of a denoising-deblurring variational problem”, Appl. Math. Optim., 44 (2001), 131–161 | DOI | MR | Zbl
[55] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, 1998 | MR | Zbl
[56] Y.-L. You, M. Kaveh, “Fourth-order partial differential equations for noise removal.”, IEEE Transactions on Image Processing, 9 (2000), 1723–1730 | DOI | MR | Zbl