An alternative approach towards the higher order denoising of images. Analytical aspects
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 47-88 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We investigate theoretical aspects of a variational model for the denoising of images which can be interpreted as a substitute for a higher order approach. In this model, the smoothness term that usually involves the highest derivatives is replaced by a mixed expression for a second unknown function in which only derivatives of lower order occur. Our main results concern existence and uniqueness as well as the regularity properties of the solutions to this variational problem established under various assumptions imposed on the growth rates of the different parts of the energy functional. Bibliography: 56 titles.
@article{ZNSL_2016_444_a2,
     author = {M. Bildhauer and M. Fuchs and J. Weickert},
     title = {An alternative approach towards the higher order denoising of images. {Analytical} aspects},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {47--88},
     year = {2016},
     volume = {444},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/}
}
TY  - JOUR
AU  - M. Bildhauer
AU  - M. Fuchs
AU  - J. Weickert
TI  - An alternative approach towards the higher order denoising of images. Analytical aspects
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 47
EP  - 88
VL  - 444
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/
LA  - en
ID  - ZNSL_2016_444_a2
ER  - 
%0 Journal Article
%A M. Bildhauer
%A M. Fuchs
%A J. Weickert
%T An alternative approach towards the higher order denoising of images. Analytical aspects
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 47-88
%V 444
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/
%G en
%F ZNSL_2016_444_a2
M. Bildhauer; M. Fuchs; J. Weickert. An alternative approach towards the higher order denoising of images. Analytical aspects. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 47-88. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a2/

[1] R. Acar, C. R. Vogel, “Analysis of bounded variation penalty methods for ill-posed problems”, Inverse Problems, 10 (1994), 1217–1229 | DOI | MR | Zbl

[2] R. A. Adams, Sobolev Spaces, Academic Press, San Diego, 1975 | MR | Zbl

[3] L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, Oxford Science Publications, Clarendon, Oxford, 2000 | MR | Zbl

[4] G. Aubert, L. Vese, “A variational method in image recovery”, SIAM J. Numer. Anal., 34:5 (1997), 1948–1979 | DOI | MR | Zbl

[5] G. Aubert, P. Kornprobst, Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, Springer, New York, 2006 | MR | Zbl

[6] P. N. Belhumeur, “A binocular stereo algorithm for reconstructing sloping, creased, and broken surfaces in the presence of half-occlusion”, Proc. Fourth International Conference on Computer Vision (Berlin, May 1993), IEEE Computer Society Press, 431–438

[7] M. Bildhauer, Convex variational problems: linear, nearly linear and anisotropic growth conditions, Lect. Notes Math., 1818, Springer, Berlin–Heidelberg–New York, 2003 | DOI | MR | Zbl

[8] M. Bildhauer, M. Fuchs, “Twodimensional anisotropic variational problems.”, Calc. Variations, 16 (2003), 177–186 | MR | Zbl

[9] M. Bildhauer, M. Fuchs, “A variational approach to the denoising of images based on different variants of the TV-regularization”, Appl. Math. Optim., 66:3 (2012), 331–361 | DOI | MR | Zbl

[10] M. Bildhauer, M. Fuchs, “On some pertubations of the total variation image inpainting method. Part I: regularity theory”, J. Math. Sciences, 202:2 (2013), 154–169 | DOI | MR

[11] M. Bildhauer, M. Fuchs, C. Tietz, “$C^{1,\alpha}$-interior regularity for minimizers of a class of variational problems related to image inpainting”, Algebra Analiz, 27:3 (2015), 51–65

[12] M. Bildhauer, M. Fuchs, X. Zhong, “A lemma on the higher integrability of functions with applications to the regularity theory of two dimensional generalized Newtonian fluids”, Manus. Math., 116:2 (2005), 135–156 | DOI | MR | Zbl

[13] P. Blomgren, T. F. Chan, P. Mulet, L. Vese, W. L. Wan, “Variational PDE models and methods for image processing”, Numerical Analysis 1999 (Dundee), Chapman Hall/CRC Res. Notes Math., 420, Chapman Hall/CRC, Boca Raton, FL, 2000, 43–67 | MR | Zbl

[14] K. Bredies, K. Kunisch, T. Pock, “Total generalized variation”, SIAM J. Imaging Sci., 3 (2010), 492–526 | DOI | MR | Zbl

[15] K. Bredies, K. Kunisch, T. Valkonen, “Properties of $L^1$-TVG$^2$: The one-dimensional case”, J. Math. Analysis Appl., 398 (2013), 438–454 | DOI | MR | Zbl

[16] K. Bredies, T. Valkonen, “Inverse problems with second-order total generalized variation constraints”, Proc. 9th International Conference on Sampling Theory and Applications, Singapore, 2011

[17] C. Brito-Loeza, K. Chen, “On high-order denoising models and fast algorithms for vector-valued images”, IEEE Transactions on Image Processing, 19 (2010), 1518–1526 | DOI | MR

[18] M. Burger, K. Papafitsoros, E. Papoutsellis, C.-B. Schönlieb, Infimal convolution regularisation functionals of $BV$ and $L^p$ spaces. Part I: The finite $p$ case, April 2015, arXiv: ; Journal of Mathematical Imaging and Vision (to appear) 1504.01956[math.NA] | MR

[19] M. Burger, K. Papafitsoros, E. Papoutsellis, C.-B. Schönlieb, Infimal convolution regularisation functionals of $BV$ and $L^p$ spaces. The case $p=\infty$, Oct. 2015, arXiv: 1510.09032[math.NA] | MR

[20] V. Caselles, A. Chambolle, M. Novaga, “Regularity for solutions of the total variation denoising problem”, Rev. Mat. Iberoam., 27 (2011), 233–252 | DOI | MR | Zbl

[21] A. Chambolle, P.-L. Lions, “Image recovery via total variation minimization and related problems”, Numer. Math., 76 (1997), 167–188 | DOI | MR | Zbl

[22] T. F. Chan, S. Esedoglu, F. E. Park, A fourth order dual method for staircase reduction in texture extraction and image restoration problems, Technical Report CAM-05-28, Dept. of Mathematics, University of California at Los Angeles, LA, 2005

[23] T. Chan, J. Shen, Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods, SIAM, Philadelphia, 2005 | MR | Zbl

[24] Y. Chen, S. Levine, M. Rao, “Variable exponent, linear growth functionals in image restoration”, SIAM J. Appl. Math., 66 (2006), 1383–1406 | DOI | MR | Zbl

[25] E. Di Benedetto, “$C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations”, Nonlinear Anal., 7 (1983), 827–850 | DOI | MR

[26] S. Didas, J. Weickert, B. Burgeth, “Properties of higher order nonlinear diffusion filtering”, J. Math. Imaging Vision, 35 (2009), 208–226 | DOI | MR

[27] D. Ferstl, C. Reinbacher, R. Ranftl, M. Rüther, H. Bischof, “Image guided depth upsampling using anisotropic total generalized variation”, Proc. International Conference on Computer Vision, Sydney, Australia, Dec. 2013, 993–1000

[28] J. Frehse, “Two dimensional variational problems with thin obstacles”, Math. Z., 143 (1975), 279–288 | DOI | MR | Zbl

[29] J. Frehse, G. Seregin, “Regularity for solutions of variational problems in the deformation theory of plasticity with logarithmic hardening”, Transl. Am. Math. Soc., 193 (1999), 127–152 | MR

[30] M. Fuchs, “Computable upper bounds for the constants in Poincarè-type inequalities for fields of bounded deformation”, Math. Meth. Appl. Sciences, 34:15 (2011), 1920–1932 | DOI | MR | Zbl

[31] M. Fuchs, S. Repin, “A posteriori error estimates for the approximations of the stresses in the Hencky plasticity problem”, Numer. Funct. Anal. Optim., 32:6 (2011), 610–640 | DOI | MR | Zbl

[32] M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Lect. Notes Math., 1749, Springer, Berlin–Heidelberg, 2000 | DOI | MR | Zbl

[33] E. Giusti, Minimal Surfaces and Functions of Bounded Variation., Monographs in Mathematics, 80, Birkhäuser, Basel, 1984 | MR | Zbl

[34] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Grundlehren der Math. Wiss., 224, 2nd edn., Springer, Berlin, 1989

[35] J. B. Greer, A. L. Bertozzi, “Traveling wave solutions of fourth order PDEs for image processing”, SIAM J. Math. Analysis, 36 (2004), 38–68 | DOI | MR | Zbl

[36] ter Haar Romeny B. M. (Ed.), Geometry-driven Diffusion in Computer Vision, Kluwer, Dordrecht, 1994 | MR | Zbl

[37] D. Hafner, C. Schroers, J. Weickert, “Introducing maximal anisotropy into second order coupling models”, Pattern Recognition, Lecture Notes in Computer Science, 9358, eds. Gall J., Gehler P., Leibe B., Springer, Berlin, 2015, 79–90 | DOI | MR

[38] A. Hewer, J. Weickert, T. Scheffer, H. Seibert, S. Diebels, “Lagrangian strain tensor computation with higher order variational models”, Proc. 24th British Machine Vision Conference, eds. Burghardt T., Damen D., Mayol-Cuevas W., Mirmehdi M., BMVA Press, Bristol, UK, Sept. 2013

[39] B. K. P. Horn, “Height and gradient from shading”, International J. Computer Vision, 5:1 (1990), 37–75 | DOI

[40] B. Kawohl, “Variational versus PDE-based approaches in mathematical image processing”, CRM Proceedings and Lecture Notes, 44 (2008), 113–126 | MR | Zbl

[41] Academic Press, New York, 1968 | Zbl | Zbl

[42] M. Lysaker, A. Lundervold, X.-C. Tai, “Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time”, IEEE Transactions on Image Processing, 12 (2003), 1579–1590 | DOI | Zbl

[43] C. B. Morrey (Jr.), Multiple integrals in the calculus of variations, Reprint of the 1966 edition, Classics in Mathematics, Springer-Verlag, Berlin, 2008 | MR | Zbl

[44] Math. UssR Sbornik, 17:2 (1972), 257–268 | DOI | MR | Zbl

[45] K. Papafitsoros, K. Bredies, “A study of the one dimensional total generalised variation regularisation problem”, Inverse Problems and Imaging, 9 (2015), 511–550 | DOI | MR | Zbl

[46] P. Perona, J. Malik, “Scale space and edge detection using anisotropic diffusion”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 12 (1990), 629–639 | DOI

[47] L. Rudin, S. Osher, E. Fatemi, “Nonlinear total variation based noise removal algorithms”, Physica D, 60 (1992), 259–268 | DOI | MR | Zbl

[48] O. Scherzer, “Denoising with higher order derivatives of bounded variation and an application to parameter estimation”, Computing, 60 (1998), 1–28 | DOI | MR

[49] S. Setzer, G. Steidl, T. Teuber, “Infimal convolution regularizations with discrete $\ell_1$-type functionals”, Communications in Mathematical Sciences, 9 (2011), 797–827 | DOI | MR | Zbl

[50] G. Strang, R. Temam, “Functions of bounded deformation”, Arch. Rat. Mech. Anal., 75 (1981), 7–21 | MR

[51] P. M. Suquet, “Sur une nouveau cadre fonctionnel pour les équations de la plasticité”, C. R. Acad. Sc. Paris (A), 286 (1978), 1129–1132 | MR | Zbl

[52] P. M. Suquet, “Un espace fonctionnel pour les équations de la plasticité”, Annales Faculté Sc. Toulouse $5^e$ sér., 1 (1979), 77–87 | DOI | MR | Zbl

[53] P. Tolksdorf, “Everywhere-regularity for some quasilinear systems with a lack of ellipticity”, Ann. Mat. Pura Appl., 134 (1983), 241–266 | DOI | MR | Zbl

[54] L. Vese, “A study in the $\mathrm{BV}$ space of a denoising-deblurring variational problem”, Appl. Math. Optim., 44 (2001), 131–161 | DOI | MR | Zbl

[55] J. Weickert, Anisotropic Diffusion in Image Processing, Teubner, Stuttgart, 1998 | MR | Zbl

[56] Y.-L. You, M. Kaveh, “Fourth-order partial differential equations for noise removal.”, IEEE Transactions on Image Processing, 9 (2000), 1723–1730 | DOI | MR | Zbl