Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 15-46
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove local regularity up to the flat part of the boundary, for certain classes of distributional solutions that are $L_\infty L^{3,q}$ with $q$ finite. The corresponding result, for the interior case, was proven recently by Wang and Zhang, see also work by Phuc. For local regularity, up to the flat part of the boundary, $q=3$ was established by G. A. Seregin. Our result can be viewed as an extension of this to $L^{3,q}$ with $q$ finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new $\epsilon$-regularity criterion are central themes in providing this extension.
@article{ZNSL_2016_444_a1,
author = {T. Barker},
title = {Local boundary regularity for the {Navier--Stokes} equations in nonendpoint borderline {Lorentz} spaces},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {15--46},
publisher = {mathdoc},
volume = {444},
year = {2016},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/}
}
TY - JOUR AU - T. Barker TI - Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 15 EP - 46 VL - 444 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/ LA - en ID - ZNSL_2016_444_a1 ER -
T. Barker. Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 15-46. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/