Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 15-46

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove local regularity up to the flat part of the boundary, for certain classes of distributional solutions that are $L_\infty L^{3,q}$ with $q$ finite. The corresponding result, for the interior case, was proven recently by Wang and Zhang, see also work by Phuc. For local regularity, up to the flat part of the boundary, $q=3$ was established by G. A. Seregin. Our result can be viewed as an extension of this to $L^{3,q}$ with $q$ finite. New scale-invariant bounds, refined pressure decay estimates near the boundary and development of a convenient new $\epsilon$-regularity criterion are central themes in providing this extension.
@article{ZNSL_2016_444_a1,
     author = {T. Barker},
     title = {Local boundary regularity for the {Navier--Stokes} equations in nonendpoint borderline {Lorentz} spaces},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {15--46},
     publisher = {mathdoc},
     volume = {444},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/}
}
TY  - JOUR
AU  - T. Barker
TI  - Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 15
EP  - 46
VL  - 444
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/
LA  - en
ID  - ZNSL_2016_444_a1
ER  - 
%0 Journal Article
%A T. Barker
%T Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 15-46
%V 444
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/
%G en
%F ZNSL_2016_444_a1
T. Barker. Local boundary regularity for the Navier--Stokes equations in nonendpoint borderline Lorentz spaces. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 15-46. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a1/