On monotonicity of some functionals under monotone rearrangement with respect to one variable
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 5-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider the Pólya–Szegö inequality for monotone rearrangement with integrand dependent on the rearrangement variable. The inequality is proved for integrands having polynomial growth.
@article{ZNSL_2016_444_a0,
     author = {S. V. Bankevich},
     title = {On monotonicity of some functionals under monotone rearrangement with respect to one variable},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     year = {2016},
     volume = {444},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/}
}
TY  - JOUR
AU  - S. V. Bankevich
TI  - On monotonicity of some functionals under monotone rearrangement with respect to one variable
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 14
VL  - 444
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/
LA  - ru
ID  - ZNSL_2016_444_a0
ER  - 
%0 Journal Article
%A S. V. Bankevich
%T On monotonicity of some functionals under monotone rearrangement with respect to one variable
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-14
%V 444
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/
%G ru
%F ZNSL_2016_444_a0
S. V. Bankevich. On monotonicity of some functionals under monotone rearrangement with respect to one variable. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/

[1] E. Lib, M. Loss, Analiz, Nauchnaya kniga, Novosibirsk, 1998, 276 pp.

[2] B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture notes in mathematics, 1150, Springer Verlag, Berlin, 1985, 134 pp. | MR | Zbl

[3] F. Brock, “Weighted Dirichlet-type inequalities for Steiner symmetrization”, Calc. Var. and PDEs, 8 (1999), 15–25 | DOI | MR | Zbl

[4] S. V. Bankevich, A. I. Nazarov, “On monotonicity of some functionals under rearrangements”, Calc. Var. and PDEs, 53:3 (2015), 627–647 | DOI | MR | Zbl

[5] S. V. Bankevich, A. I. Nazarov, “Ob obobschenii neravenstva Poia–Sege dlya odnomernykh funktsionalov”, Doklady Akademii Nauk, 438:1 (2011), 11–13 | MR | Zbl

[6] R. Landes, “Some remarks on rearrangements and functionals with non-constant density”, Math. Nachr., 280:5–6 (2007), 560–570 | DOI | MR | Zbl

[7] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR