On monotonicity of some functionals under monotone rearrangement with respect to one variable
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 5-14
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the Pólya–Szegö inequality for monotone rearrangement with integrand dependent on the rearrangement variable. The inequality is proved for integrands having polynomial growth.
@article{ZNSL_2016_444_a0,
author = {S. V. Bankevich},
title = {On monotonicity of some functionals under monotone rearrangement with respect to one variable},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--14},
publisher = {mathdoc},
volume = {444},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/}
}
TY - JOUR AU - S. V. Bankevich TI - On monotonicity of some functionals under monotone rearrangement with respect to one variable JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 5 EP - 14 VL - 444 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/ LA - ru ID - ZNSL_2016_444_a0 ER -
S. V. Bankevich. On monotonicity of some functionals under monotone rearrangement with respect to one variable. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/