On monotonicity of some functionals under monotone rearrangement with respect to one variable
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the Pólya–Szegö inequality for monotone rearrangement with integrand dependent on the rearrangement variable. The inequality is proved for integrands having polynomial growth.
@article{ZNSL_2016_444_a0,
     author = {S. V. Bankevich},
     title = {On monotonicity of some functionals under monotone rearrangement with respect to one variable},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {444},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/}
}
TY  - JOUR
AU  - S. V. Bankevich
TI  - On monotonicity of some functionals under monotone rearrangement with respect to one variable
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 14
VL  - 444
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/
LA  - ru
ID  - ZNSL_2016_444_a0
ER  - 
%0 Journal Article
%A S. V. Bankevich
%T On monotonicity of some functionals under monotone rearrangement with respect to one variable
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-14
%V 444
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/
%G ru
%F ZNSL_2016_444_a0
S. V. Bankevich. On monotonicity of some functionals under monotone rearrangement with respect to one variable. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 45, Tome 444 (2016), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_2016_444_a0/