Symmetries of a~flat cosymbol algebra of the differential operators
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 95-105

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the structure theorem is proved for graded symmetries of a flat cosymbol algebra. This theorem together with Equivariant Polynomials Lemma gives an upper bound on the grade dimensions of the Lie algebra of symmetries.
@article{ZNSL_2016_443_a8,
     author = {V. S. Kalnitsky},
     title = {Symmetries of a~flat cosymbol algebra of the differential operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {95--105},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a8/}
}
TY  - JOUR
AU  - V. S. Kalnitsky
TI  - Symmetries of a~flat cosymbol algebra of the differential operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 95
EP  - 105
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a8/
LA  - ru
ID  - ZNSL_2016_443_a8
ER  - 
%0 Journal Article
%A V. S. Kalnitsky
%T Symmetries of a~flat cosymbol algebra of the differential operators
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 95-105
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a8/
%G ru
%F ZNSL_2016_443_a8
V. S. Kalnitsky. Symmetries of a~flat cosymbol algebra of the differential operators. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 95-105. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a8/