Proof of the congruence conjecture for generalized rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 91-94
Cet article a éte moissonné depuis la source Math-Net.Ru
In 2007 A. L. Smirnov formulated an interesting conjecture on generalized rings introduced and studied by N. V. Durov. In this paper we prove the conjecture.
@article{ZNSL_2016_443_a7,
author = {S. A. Evdokimov},
title = {Proof of the congruence conjecture for generalized rings},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {91--94},
year = {2016},
volume = {443},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a7/}
}
S. A. Evdokimov. Proof of the congruence conjecture for generalized rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 91-94. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a7/
[1] A. L. Smirnov, “Obobschënnye podkoltsa arifmeticheskikh kolets”, Zap. nauchn. semin. POMI, 349, 2007, 211–241 | MR
[2] N. Durov, New approach to Arakelov geometry, 16 Apr. 2007, arXiv: 0704.2030[math AG]