Proof of the congruence conjecture for generalized rings
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 91-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In 2007 A. L. Smirnov formulated an interesting conjecture on generalized rings introduced and studied by N. V. Durov. In this paper we prove the conjecture.
@article{ZNSL_2016_443_a7,
     author = {S. A. Evdokimov},
     title = {Proof of the congruence conjecture for generalized rings},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {91--94},
     year = {2016},
     volume = {443},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a7/}
}
TY  - JOUR
AU  - S. A. Evdokimov
TI  - Proof of the congruence conjecture for generalized rings
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 91
EP  - 94
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a7/
LA  - ru
ID  - ZNSL_2016_443_a7
ER  - 
%0 Journal Article
%A S. A. Evdokimov
%T Proof of the congruence conjecture for generalized rings
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 91-94
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a7/
%G ru
%F ZNSL_2016_443_a7
S. A. Evdokimov. Proof of the congruence conjecture for generalized rings. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 91-94. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a7/

[1] A. L. Smirnov, “Obobschënnye podkoltsa arifmeticheskikh kolets”, Zap. nauchn. semin. POMI, 349, 2007, 211–241 | MR

[2] N. Durov, New approach to Arakelov geometry, 16 Apr. 2007, arXiv: 0704.2030[math AG]