Cyclic Galois extensions for quintic equation
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 78-90

Voir la notice de l'article provenant de la source Math-Net.Ru

The authors investigate cyclic Galois extensions for quintic equation, and construct resolvent for real fields and fields, containing square root of $-1$. Also they prove a theorem that characterizes all Galois extensions for quintics.
@article{ZNSL_2016_443_a6,
     author = {K. Y. Gudkov and B. B. Lur'e},
     title = {Cyclic {Galois} extensions for quintic equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {78--90},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a6/}
}
TY  - JOUR
AU  - K. Y. Gudkov
AU  - B. B. Lur'e
TI  - Cyclic Galois extensions for quintic equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 78
EP  - 90
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a6/
LA  - ru
ID  - ZNSL_2016_443_a6
ER  - 
%0 Journal Article
%A K. Y. Gudkov
%A B. B. Lur'e
%T Cyclic Galois extensions for quintic equation
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 78-90
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a6/
%G ru
%F ZNSL_2016_443_a6
K. Y. Gudkov; B. B. Lur'e. Cyclic Galois extensions for quintic equation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 78-90. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a6/