@article{ZNSL_2016_443_a6,
author = {K. Y. Gudkov and B. B. Lur'e},
title = {Cyclic {Galois} extensions for quintic equation},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {78--90},
year = {2016},
volume = {443},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a6/}
}
K. Y. Gudkov; B. B. Lur'e. Cyclic Galois extensions for quintic equation. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 78-90. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a6/
[1] M. M. Postnikov, Teoriya Galua, Fizmatgiz, 1963
[2] F. Klein, Lektsii ob ikosaedre i reshenii uravnenii pyatoi stepeni, Per. s nem., ed. A. N. Tyurin, Nauka. Gl. red. fiz.-mat. lit., 1989 | MR
[3] N. G. Chebotarev, Osnovy teorii Galua, Gos. tekhn.-teor. izd-vo, 1934
[4] David A. Cox, Galois theory, 2nd edition, A John Wiley Sons, inc., 2012 | MR | Zbl
[5] C. Jensen, N. Yui, “Polynomials with $D_p$ as Galois group”, J. Number Theory, 15 (1982), 347–375 | DOI | MR | Zbl
[6] C. Williamson, “Odd degree polynomials with dihedral Galois groups”, J. Number Theory, 34 (1990), 153–173 | DOI | MR | Zbl
[7] E. Galua, Matematicheskie raboty, Institut kompyuternykh issledovanii, 2002
[8] B. Spearman, K. Williams, “Dihedral quintic polynomials and a theorem of Galois”, Indian J. Pure Appl. Math., 30:9 (1999), 839–845 | MR | Zbl
[9] B. Lure, “Kriterii nerazreshimosti v radikalakh uravnenii prostoi stepeni”, Dokl. RAN, 388 (2003), 447–448 | MR | Zbl