Explicit form of the Hilbert symbol on polynomial formal module for multidimensional local field. II
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 46-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Current paper describes the explicit formula of the Hibert pairing between Milnor $K$-group of multidimensional local field and polynomial formal module. This formula generalizes similar results for one-dimensioinal case and multidimensional case of multiplicative group. A case of different characteristics of a field and its first residue field is considered.
@article{ZNSL_2016_443_a4,
     author = {S. V. Vostokov and V. V. Volkov},
     title = {Explicit form of the {Hilbert} symbol on polynomial formal module for multidimensional local {field.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {46--60},
     year = {2016},
     volume = {443},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a4/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - V. V. Volkov
TI  - Explicit form of the Hilbert symbol on polynomial formal module for multidimensional local field. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 46
EP  - 60
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a4/
LA  - ru
ID  - ZNSL_2016_443_a4
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A V. V. Volkov
%T Explicit form of the Hilbert symbol on polynomial formal module for multidimensional local field. II
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 46-60
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a4/
%G ru
%F ZNSL_2016_443_a4
S. V. Vostokov; V. V. Volkov. Explicit form of the Hilbert symbol on polynomial formal module for multidimensional local field. II. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 46-60. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a4/

[1] S. V. Vostokov, V. V. Volkov, M. V. Bondarko, “Yavnaya forma simvola Gilberta dlya mnogochlennykh formalnykh modulei v mnogomernom lokalnom pole. I”, Zap. nauchn. semin. POMI, 430, 2014, 53–60

[2] A. N. Parshin, “Lokalnaya teoriya polei klassov”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 165, 1984, 143–170 | MR | Zbl

[3] S. V. Vostokov, “Yavnaya forma zakona vzaimnosti”, Izv. AN SSSR, Ser. matem., 42:6 (1978), 1288–1321 | MR | Zbl

[4] I. R. Shafarevich,, “Obschii zakon vzaimnosti”, Matem. sb., 26(68):1 (1950), 113–146 | MR | Zbl

[5] I. B. Fesenko, S. V. Vostokov, Local Fields and Their Extensions, Second Edition, Amer. Math. Soc., Providence, R.I., 2002 | MR | Zbl

[6] F. Lorenz, S. Vostokov, “Honda groups and explicit pairings on the modules of Cartier curves”, Contemp. Math., 300 (2002), 143–170 | DOI | MR | Zbl

[7] S. V. Vostokov, F. Lorents, “Yavnaya formula simvola Gilberta dlya grupp Khondy v mnogomernom lokalnom pole”, Matem. sb., 194:2 (2003), 3–36 | DOI | MR | Zbl

[8] S. V. Vostokov, “Yavnaya konstruktsiya teorii polei klassov mnogomernogo lokalnogo polya”, Izv. AN SSSR. Ser. matem., 49:2 (1985), 283–308 | MR | Zbl

[9] S. V. Vostokov, “Sparivanie Gilberta v polnom mnogomernom pole”, Tr. MIAN, 208, Nauka, Fizmatlit, M., 1995, 80–92 | MR | Zbl

[10] T. B. Belyaeva, S. V. Vostokov, “Simvol Gilberta v polnom pole. I”, Zap. nauchn. semin. POMI, 281, 2001, 5–34 | MR | Zbl

[11] S. S. Afanaseva, B. M. Bekker, S. V. Vostokov, “Simvol Gilberta v mnogomernykh lokalnykh polyakh dlya formalnoi gruppy Lyubina–Teita”, Zap. nauchn. semin. POMI, 400, 2012, 20–49 | MR

[12] S. V. Vostokov, V. V. Volkov, “Yavnaya forma simvola Gilberta dlya mnogochlennykh formalnykh modulei”, Algebra i analiz, 26:5 (2014), 125–141 | MR

[13] K. Kato, “A generalization of local class field theory by using $K$-groups. II”, J. Fac. Sci. Univ. Tokyo, 27 (1980), 603–683 | MR | Zbl