Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 33-45

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a ring with involution (associative, with identity), $e_1,\dots,e_n$ be a full system of hermitian idempotents in $A$ such that every $e_i$ generates $A$ as a two-sided ideal. This paper proves normality of the elementary subgroup in $\operatorname{Sp}(2,A)$ if $n\ge3$ and $A$ satisfies an analog of local stable rank condition.
@article{ZNSL_2016_443_a3,
     author = {E. Yu. Voronetsky},
     title = {Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {33--45},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a3/}
}
TY  - JOUR
AU  - E. Yu. Voronetsky
TI  - Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 33
EP  - 45
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a3/
LA  - ru
ID  - ZNSL_2016_443_a3
ER  - 
%0 Journal Article
%A E. Yu. Voronetsky
%T Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 33-45
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a3/
%G ru
%F ZNSL_2016_443_a3
E. Yu. Voronetsky. Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 33-45. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a3/