Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 33-45
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $A$ be a ring with involution (associative, with identity), $e_1,\dots,e_n$ be a full system of hermitian idempotents in $A$ such that every $e_i$ generates $A$ as a two-sided ideal. This paper proves normality of the elementary subgroup in $\operatorname{Sp}(2,A)$ if $n\ge3$ and $A$ satisfies an analog of local stable rank condition.
@article{ZNSL_2016_443_a3,
author = {E. Yu. Voronetsky},
title = {Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {33--45},
publisher = {mathdoc},
volume = {443},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a3/}
}
E. Yu. Voronetsky. Normality of elementary subgroup in~$\operatorname{Sp}(2,A)$. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 33-45. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a3/