Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 222-233
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $H$ be a subgroup of the hyperbolic unitary group $\operatorname U(2n,R,\Lambda)$ that contains the elementary block-diagonal subgroup $\operatorname{EU}(\nu,R,\Lambda)$ of type $\nu$. Assume that all self-conjugate blocks of $\nu$ are of size at least 6 (at least 4 if the form parameter $\Lambda$ satisfies the condition $R\Lambda+\Lambda R=R$) and that all non-self-conjugate blocks are of size at least 5. Then there exists a unique major exact form net of ideals $(\sigma,\Gamma)$ such that $\operatorname{EU}(\sigma,\Gamma)\le H\le\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$, where $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ stands for the normalizer in $\operatorname U(2n,R,\Lambda)$ of the form net subgroup $\operatorname U(\sigma,\Gamma)$ of level $(\sigma,\Gamma)$ and $\operatorname{EU}(\sigma,\Gamma)$ denotes the corresponding elementary form net subgroup. The normalizer $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ is described in terms of congruences.
@article{ZNSL_2016_443_a13,
author = {A. V. Shchegolev},
title = {Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {222--233},
publisher = {mathdoc},
volume = {443},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/}
}
TY - JOUR AU - A. V. Shchegolev TI - Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 222 EP - 233 VL - 443 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/ LA - ru ID - ZNSL_2016_443_a13 ER -
%0 Journal Article %A A. V. Shchegolev %T Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 222-233 %V 443 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/ %G ru %F ZNSL_2016_443_a13
A. V. Shchegolev. Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 222-233. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/