Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 222-233 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $H$ be a subgroup of the hyperbolic unitary group $\operatorname U(2n,R,\Lambda)$ that contains the elementary block-diagonal subgroup $\operatorname{EU}(\nu,R,\Lambda)$ of type $\nu$. Assume that all self-conjugate blocks of $\nu$ are of size at least 6 (at least 4 if the form parameter $\Lambda$ satisfies the condition $R\Lambda+\Lambda R=R$) and that all non-self-conjugate blocks are of size at least 5. Then there exists a unique major exact form net of ideals $(\sigma,\Gamma)$ such that $\operatorname{EU}(\sigma,\Gamma)\le H\le\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$, where $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ stands for the normalizer in $\operatorname U(2n,R,\Lambda)$ of the form net subgroup $\operatorname U(\sigma,\Gamma)$ of level $(\sigma,\Gamma)$ and $\operatorname{EU}(\sigma,\Gamma)$ denotes the corresponding elementary form net subgroup. The normalizer $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ is described in terms of congruences.
@article{ZNSL_2016_443_a13,
     author = {A. V. Shchegolev},
     title = {Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--233},
     year = {2016},
     volume = {443},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/}
}
TY  - JOUR
AU  - A. V. Shchegolev
TI  - Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 222
EP  - 233
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/
LA  - ru
ID  - ZNSL_2016_443_a13
ER  - 
%0 Journal Article
%A A. V. Shchegolev
%T Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 222-233
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/
%G ru
%F ZNSL_2016_443_a13
A. V. Shchegolev. Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 222-233. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/

[1] Z. I. Borevich, “Opisanie podgrupp polnoi lineinoi gruppy, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 64, 1976, 12–29 | MR | Zbl

[2] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp v polnoi lineinoi gruppe nad kommutativnym koltsom”, Tr. Mat. in-ta AN SSSR, 165, 1984, 24–42 | MR | Zbl

[3] Z. I. Borevich, N. A. Vavilov, “Raspolozhenie podgrupp, soderzhaschikh gruppu kletochno diagonalnykh matrits, v polnoi lineinoi gruppe nad koltsom”, Izv. vuzov. Matem., 11 (1982), 12–16 | MR | Zbl

[4] Z. I. Borevich, N. A. Vavilov, V. Narkevich, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom”, Zap. nauchn. semin. LOMI, 94, 1979, 13–20 | MR | Zbl

[5] N. A. Vavilov, “Podgruppy rasschepimykh ortogonalnykh grupp nad kommutativnym koltsom”, Zap. nauchn. semin. POMI, 281, 2001, 35–59 | MR | Zbl

[6] N. A. Vavilov, “O podgruppakh polnoi lineinoi gruppy nad dedekindovym koltsom arifmeticheskogo tipa”, Izv. vuzov. Matem., 12 (1987), 14–20 | MR | Zbl

[7] N. A. Vavilov, “O podgruppakh simplekticheskoi gruppy, soderzhaschikh subsystem subgroup”, Zap. nauchn. semin. POMI, 349, 2007, 5–29 | MR

[8] N. A. Vavilov, “Ob opisanii podgrupp polnoi lineinoi gruppy nad polulokalnym koltsom, soderzhaschikh gruppu diagonalnykh matrits”, Zap. nauchn. semin. LOMI, 86, 1979, 30–33 | MR | Zbl

[9] N. A. Vavilov, A. V. Stepanov, “Nadgruppy poluprostykh grupp”, Vestn. Samarskogo un-ta, Estestvennonauchnaya ser., 2008, no. 3, 51–95 | MR | Zbl

[10] E. V. Dybkova, “Teorema Borevicha dlya giperbolicheskoi unitarnoi gruppy nad nekommutativnym telom”, Zap. nauchn. semin. POMI, 321, 2005, 136–167 | MR | Zbl

[11] E. V. Dybkova, “Naddiagonalnye podgruppy giperbolicheskoi unitarnoi gruppy dlya khoroshego formennogo koltsa nad polem”, Zap. nauchn. semin. POMI, 236, 1997, 87–96 | MR | Zbl

[12] E. V. Dybkova, “Formennye seti i reshetka naddiagonalnykh podgrupp simplekticheskoi gruppy nad polem kharakteristiki 2”, Algebra i analiz, 10:4 (1998), 113–129 | MR | Zbl

[13] E. V. Dybkova, “Nadgruppy diagonalnoi gruppy v giperbolicheskoi unitarnoi gruppe nad prostym artinovym koltsom. I”, Zap. nauchn. semin. POMI, 338, 2006, 155–172 | MR | Zbl

[14] E. V. Dybkova, “Nadgruppy diagonalnoi gruppy v giperbolicheskoi unitarnoi gruppe nad prostym artinovym koltsom. II”, Zap. nauchn. semin. POMI, 356, 2008, 85–117 | MR | Zbl

[15] E. B. Dynkin, “Maksimalnye podgruppy klassicheskikh grupp”, Tr. MMO, 1, 1952, 39–166 | MR | Zbl

[16] E. B. Dynkin, “Poluprostye podalgebry poluprostykh algebr Li”, Mat. sb., 30(72):2 (1952), 349–462 | MR | Zbl

[17] M. Aschbacher, “On the maximal subgroups of the finite classical groups”, Invent. Math., 76:3 (1984), 469–514 | DOI | MR | Zbl

[18] M. Aschbacher, “Finite simple groups and their subgroups”, Group theory (Beijing, 1984), Lecture Notes in Math., 1185, Springer, Berlin, 1986, 1–57 | DOI | MR

[19] M. Aschbacher, “Subgroup structure of finite groups”, Proceedings of the Rutgers group theory year, 1983–1984 (New Brunswick, N.J., 1983–1984), Cambridge Univ. Press, Cambridge, 1985, 35–44 | MR

[20] A. Bak, K-theory of forms, Princeton Univ. Press; University of Tokyo Press, 1981 | MR | Zbl

[21] A. Bak, The stable structure of quadratic modules, Ph. D. thesis, Columbia University, 1969

[22] A. Bak, N. A. Vavilov, “Structure of hyperbolic unitary groups. I: Elementary subgroups”, Algebra Colloquium, 7:2 (2000), 159–196 | DOI | MR | Zbl

[23] A. Bak, A. Stepanov, “Dimension theory and non-stable K-theory for net subgroups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[24] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer-Verlag, 1989 | MR | Zbl

[25] P. B. Kleidman, M. W. Liebeck, The subgroup structure of the finite classical groups, Cambridge Univ. Press, 1990 | MR | Zbl

[26] G. M. Seitz, The maximal subgroups of classical algebraic groups, Mem. AMS, 67, no. 365, 1987 | MR

[27] A. Shchegolev, Overgroups of elementary block-diagonal subgroups in even unitary groups over quasi-finite rings, Ph. D. thesis, Universität Bielefeld, 2015

[28] D. M. Testerman, Irreducible subgroups of exceptional algebraic groups, Mem. AMS, 75, no. 390, 1988 | MR