Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 222-233

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a subgroup of the hyperbolic unitary group $\operatorname U(2n,R,\Lambda)$ that contains the elementary block-diagonal subgroup $\operatorname{EU}(\nu,R,\Lambda)$ of type $\nu$. Assume that all self-conjugate blocks of $\nu$ are of size at least 6 (at least 4 if the form parameter $\Lambda$ satisfies the condition $R\Lambda+\Lambda R=R$) and that all non-self-conjugate blocks are of size at least 5. Then there exists a unique major exact form net of ideals $(\sigma,\Gamma)$ such that $\operatorname{EU}(\sigma,\Gamma)\le H\le\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$, where $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ stands for the normalizer in $\operatorname U(2n,R,\Lambda)$ of the form net subgroup $\operatorname U(\sigma,\Gamma)$ of level $(\sigma,\Gamma)$ and $\operatorname{EU}(\sigma,\Gamma)$ denotes the corresponding elementary form net subgroup. The normalizer $\operatorname N_{\operatorname U(2n,R,\Lambda)}(\operatorname U(\sigma,\Gamma))$ is described in terms of congruences.
@article{ZNSL_2016_443_a13,
     author = {A. V. Shchegolev},
     title = {Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {222--233},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/}
}
TY  - JOUR
AU  - A. V. Shchegolev
TI  - Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 222
EP  - 233
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/
LA  - ru
ID  - ZNSL_2016_443_a13
ER  - 
%0 Journal Article
%A A. V. Shchegolev
%T Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 222-233
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/
%G ru
%F ZNSL_2016_443_a13
A. V. Shchegolev. Overgroups of elementary block-diagonal subgroups in hyperbolic unitary groups over quasi-finite rings: main results. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 222-233. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a13/