The commutators of classical groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 151-221 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

In his seminal paper, half a century ago, Hyman Bass established a commutator formula in the setting of (stable) general linear group which was the key step in defining the $K_1$ group. Namely, he proved that for an associative ring $A$ with identity, $$ E(A)=[E(A),E(A)]=[\operatorname{GL}(A),\operatorname{GL}(A)], $$ where $\operatorname{GL}(A)$ is the stable general linear group and $E(A)$ is its elementary subgroup. Since then, various commutator formulas have been studied in stable and non-stable settings, and for a range of classical and algebraic like-groups, mostly in relation to subnormal subgroups of these groups. The major classical theorems and methods developed include some of the splendid results of the heroes of classical algebraic $K$-theory; Bak, Quillen, Milnor, Suslin, Swan and Vaserstein, among others. One of the dominant techniques in establishing commutator type results is localisation. In this note we describe some recent applications of localisation methods to the study (higher/relative) commutators in the groups of points of algebraic and algebraic-like groups, such as general linear groups, $\operatorname{GL}(n,A)$, unitary groups $\operatorname{GU}(2n,A,\Lambda)$ and Chevalley groups $G(\Phi,A)$. We also state some of the intermediate results as well as some corollaries of these results. This note provides a general overview of the subject and covers the current activities. It contains complete proofs of several main results to give the reader a self-contained source. We have borrowed the proofs from our previous papers and expositions [38–50, 99, 100, 129–132].
@article{ZNSL_2016_443_a12,
     author = {R. Hazrat and N. Vavilov and Z. Zhang},
     title = {The commutators of classical groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {151--221},
     year = {2016},
     volume = {443},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a12/}
}
TY  - JOUR
AU  - R. Hazrat
AU  - N. Vavilov
AU  - Z. Zhang
TI  - The commutators of classical groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 151
EP  - 221
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a12/
LA  - en
ID  - ZNSL_2016_443_a12
ER  - 
%0 Journal Article
%A R. Hazrat
%A N. Vavilov
%A Z. Zhang
%T The commutators of classical groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 151-221
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a12/
%G en
%F ZNSL_2016_443_a12
R. Hazrat; N. Vavilov; Z. Zhang. The commutators of classical groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 151-221. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a12/

[1] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1308 | DOI | MR

[2] E. Abe, “Chevalley groups over commutative rings”, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR

[3] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl

[4] M. Akhavan-Malayeri, “Writing certain commutators as products of cubes in free groups”, J. Pure Appl. Algebra, 177:1 (2003), 1–4 | DOI | MR | Zbl

[5] M. Akhavan-Malayeri, “Writing commutators of commutators as products of cubes in groups”, Comm. Algebra, 37 (2009), 2142–2144 | DOI | MR | Zbl

[6] H. Apte, A. Stepanov, “Local-global principle for congruence subgroups of Chevalley groups”, Central European J. Math., 12:6 (2014), 801–812 | MR | Zbl

[7] A. Bak, The stable structure of quadratic modules, Thesis, Columbia University, 1969

[8] A. Bak, $K$-Theory of Forms, Annals of Mathematics Studies, 98, Princeton University Press, Princeton, 1981 | MR | Zbl

[9] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Lecture Notes in Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR

[10] A. Bak, “Non-abelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl

[11] A. Bak, R. Basu, R. A. Rao, “Local-Global Principle for Transvection Groups”, Proc. Amer. Math. Soc., 138:4 (2010), 1191–1204 | DOI | MR | Zbl

[12] A. Bak, R. Hazrat, N. A. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl

[13] A. Bak, A. Stepanov, “Dimension theory and nonstable $\mathrm K$-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl

[14] A. Bak, N. A. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Phil. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl

[15] A. Bak, N. A. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl

[16] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR

[17] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge3)$ and $\mathrm{Sp}_{2n}$ $(n\ge2)$”, Inst. Hautes Études Sci. Publ. Math., 33 (1967), 59–133 | DOI | MR

[18] H. Bass, “Unitary algebraic $K$-theory”, Lecture Notes Math., 343, 1973, 57–265 | DOI | MR | Zbl

[19] H. Bass,, Algebraic K-theory, Benjamin, New York, 1968 | MR | Zbl

[20] R. Basu, Topics in Classical Algebraic K-Theory, Ph. D. Thesis, TIFR, 2006, 70 pp.

[21] R. Basu, Local-global principle for general quadratic and general hermitian groups and the nilpotence of $\mathrm{KH}_1$, Preprint, arXiv: 1412.3631v1

[22] R. Basu, R. A. Rao, R. Khanna, “On Quillen's local global principle”, Commutative algebra and algebraic geometry, Contemp. Math., 390, Amer. Math. Soc., Providence, RI, 2005, 17–30 | DOI | MR | Zbl

[23] Z. Borevich, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Institute Math., 3 (1985), 27–46

[24] P. Chattopadhya, R. A. Rao, Excision and elementary symplectic action, 2012, 14 pp.

[25] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl

[26] R. K. Dennis, L. N. Vaserstein, “Commutators in linear groups”, $\mathrm K$-Theory, 2 (1989), 761–767 | DOI | MR | Zbl

[27] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl

[28] D. Estes, J. Ohm, “Stable range in commutative rings”, J. Algebra,, 7:3 (1967), 343–362 | DOI | MR | Zbl

[29] S. C. Geller, C. A. Weibel, “$\mathrm K_2$ measures excision for $\mathrm K_1$”, Proc. Amer. Math. Soc., 80:1 (1980), 1–9 | MR | Zbl

[30] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$”, J. reine angew. Math., 342 (1983), 12–34 | MR | Zbl

[31] S. C. Geller, C. A. Weibel, “Subroups of elementary and Steinberg groups of congruence level $I^2$”, J. Pure Appl. Algebra, 35 (1985), 123–132 | DOI | MR | Zbl

[32] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$, II”, $K$-Theory, 2:6 (1989), 753–760 | DOI | MR | Zbl

[33] V. N. Gerasimov, “The group of units of the free product of rings”, Math. Sbornik, 134(176):1 (1987), 42–65 | MR | Zbl

[34] R. M. Guralnick, G. Malle, “Products of conjugacy classes and fixed point spaces”, J. Amer. Math. Soc., 25:1 (2012), 77–121 | DOI | MR | Zbl

[35] G. Habdank, A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation, Universität Bielefeld, 1987, 71 pp.

[36] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl

[37] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al., 1989 | MR | Zbl

[38] R. Hazrat, “Dimension theory and non-stable $\mathrm K_1$ of quadratic module”, $\mathrm K$-Theory, 27 (2002), 293–327 | DOI | MR

[39] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. $\mathrm K$-Theory, 5 (2010), 603–618 | DOI | MR | Zbl

[40] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, “The yoga of commutators”, J. Math. Sci. (N.Y.), 179:6 (2011), 662–678 | DOI | MR | Zbl

[41] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, “Commutators width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl

[42] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, Multiple commutator formula. II, 2012

[43] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl

[44] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl

[45] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl

[46] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in Chevalley groups, and applications”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl

[47] R. Hazrat, N. Vavilov, Z. Zhang, Multiple commutator formulas for unitary groups, Israel J. Math., 2016 (to appear) , 33 pp.

[48] R. Hazrat, N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59:2 (2016), 393–410 | DOI | Zbl

[49] R. Hazrat, Z. Zhang, “Generalized commutator formula”, Comm. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl

[50] R. Hazrat, Z. Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl

[51] D. A. Jackson, “Basic commutator in weights six and seven as relators”, Comm. Algebra, 36 (2008), 2905–2909 | DOI | MR | Zbl

[52] D. A. Jackson, A. M. Gaglione, D. Spellman, “Basic commutator as relators”, J. Group Theory, 5 (2001), 351–363 | MR

[53] D. A. Jackson, A. M. Gaglione, D. Spellman, “Weight five basic commutator as relators”, Contemp. Math., 511 (2010), 39–81 | DOI | MR | Zbl

[54] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR

[55] W. vander Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Lecture Notes Math., 966, 1982, 357–361 | DOI | MR

[56] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl

[57] W. van der Kallen, B. Magurn, L. Vaserstein, “Absolute stable rank and Witt cancellation for non-commutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl

[58] L.-C. Kappe, R. F. Morse, “On commutators in groups”, Groups St. Andrews 2005, v. 2, C.U.P., 2007, 531–558 | DOI | MR | Zbl

[59] S. Khlebutin, Elementary subgroups of linear groups over rings, Ph. D. Thesis, Moscow State Univ., 1987 (in Russian)

[60] M.-A. Knus, Quadratic and hermitian forms over rings, Springer Verlag, Berlin et al., 1991 | MR | Zbl

[61] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34:5 (1978), 655–669 | DOI | MR | Zbl

[62] N. Kumar, R. A. Rao, Quillen–Suslin theory for a structure theorem for the elementary symplectic group, Preprint, 2012, 15 pp. | MR

[63] Tsit-Yuen Lam, Serre's problem on projective modules, Springer Verlag, Berlin et al., 2006 | MR

[64] M. Larsen, A. Shalev, “Word maps and Waring type problems”, J. Amer. Math. Soc., 22 (2009), 437–466 | DOI | MR | Zbl

[65] M. Larsen, A. Shalev, Pham Huu Tiep, “The Waring problem for finite simple groups”, Ann. Math., 174 (2011), 1885–1950 | DOI | MR | Zbl

[66] A. V. Lavrenov, “The unitary Steinberg group is centrally closed”, Algebra i Analiz, 24:5 (2012), 783–794 | DOI | MR | Zbl

[67] F. Li, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, 3:3 (1987), 247–255 | DOI | MR | Zbl

[68] F. Li, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl

[69] F. Li, M. Liu, “Generalized sandwich theorem”, $\mathrm K$-Theory, 1 (1987), 171–184 | DOI | MR

[70] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “The Ore conjecture”, J. Europ. Math. Soc., 12 (2010), 939–1008 | DOI | MR | Zbl

[71] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Commutators in finite quasisimple groups”, Bull. London Math. Soc., 43 (2011), 1079–1092 | DOI | MR | Zbl

[72] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Products of squares in finite simple groups”, Proc. Amer. Math. Soc., 43:6 (2012), 1079–1092 | MR

[73] A. Yu. Luzgarev, “Overgroups of $E(F_4,R)$ in $G(E_6,R)$”, Algebra i Analiz, 20:6 (2008), 148–185 | MR | Zbl

[74] A. Yu. Luzgarev, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect”, St. Petersburg Math. J., 23:5 (2012), 881–890 | DOI | MR

[75] A. W. Mason, “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc., 11 (1974), 509–512 | MR

[76] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl

[77] A. W. Mason, “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math., 37:5 (1981), 401–405 | DOI | MR | Zbl

[78] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl

[79] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[80] J. Milnor, “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9 (1970), 318–344 | DOI | MR | Zbl

[81] J. Milnor, Introduction to algebraic $K$-theory, Princeton Univ. Press, Princeton, N.J., 1971 | MR | Zbl

[82] C. Moore, “Group extensions of $p$-adic and adelic linear groups”, Publ. Math. Inst. Hautes Études Sci., 35 (1968), 157–222 | MR

[83] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl

[84] V. A. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl

[85] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2003), 4752–4766 | DOI | MR

[86] V. A. Petrov, Overgroups of classical groups, Doktorarbeit, Univ. St.-Petersburg, 2005, 129 pp. (in Russian)

[87] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, Algebra i Analiz, 20:4 (2008), 160–188 | MR | Zbl

[88] D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 166-172 | DOI | MR

[89] D. Quillen, “Higher algebraic $K$-theory. I”, Lecture Notes in Math., 341, Springer, Berlin, 1973, 85–147 | DOI | MR

[90] J. Rosenberg, Algebraic $K$-Theory and its Applications, Springer-Verlag, New York, 1994 | MR | Zbl

[91] Sh. Rosset, “The higher lower central series”, Israel J. Math., 73:3 (1991), 257–279 | DOI | MR | Zbl

[92] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-Theory, 17 (1999), 295–302 | DOI | MR | Zbl

[93] A. Shalev, “Commutators, words, conjugacy classes and character methods”, Turk. J. Math., 31 (2007), 131–148 | MR | Zbl

[94] A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Ann. Math., 170:3 (2009), 1383–1416 | DOI | MR | Zbl

[95] A. Smolensky, B. Sury, N. A. Vavilov, “Gauss decomposition for Chevalley groups revisited”, Intern. J. Group Theory, 1:1 (2012), 3–16 | MR | Zbl

[96] A. Stavrova, “Homotopy invariance of non-stable $\mathrm K_1$-functors”, J. K-Theory, 13 (2014), 199–248 | DOI | MR | Zbl

[97] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl

[98] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl

[99] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl

[100] A. V. Stepanov, N. A. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl

[101] A. V. Stepanov, N. A. Vavilov, H. You, Overgroups of semi-simple subgroups: localisation approach, Preprint, 2012

[102] A. Stepanov, “Nonabelian K-theory for Chevalley groups over rings”, J. Math. Sci. (New York), 209:4 (2015), 645–656 | DOI | Zbl

[103] R. Steinberg, “Générateurs, rélations et revêtements des groupes algébriques”, Colloque Théorie des Groupes Algébriques, Bruxelles, 1962, 113–127 | MR | Zbl

[104] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967 | MR

[105] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl

[106] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | MR | Zbl

[107] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl

[108] R. G. Swan, “Excision in algebraic $\mathrm K$-theory”, J. Pure Appl. Algebra, 1:3 (1971), 221–252 | DOI | MR | Zbl

[109] G. Taddei, Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité, Thèse, Univ. de Genève, 1985

[110] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | DOI | MR | Zbl

[111] G. Tang, “Hermitian groups and $K$-theory”, $K$-Theory, 13:3 (1998), 209–267 | DOI | MR | Zbl

[112] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér. A, 283 (1976), 693–695 | MR | Zbl

[113] M. S. Tulenbaev, “The Steinberg group of a polynomial ring”, Math. U.S.S.R. Sb., 45:1 (1983), 139–154 | DOI | MR | Zbl

[114] M. S. Tulenbaev, “The Schur multiplier of the group of elementary matrices of finite order”, J. Sov. Math., 17:4 (1981), 2062–2067 | DOI | MR | Zbl

[115] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Lecture Notes Math., 854, 1981, 454–465 | MR

[116] L. N. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl

[117] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR

[118] L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl

[119] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl

[120] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl

[121] L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory”, Math. USSR Izv., 10:5 (1976), 937–1001 | DOI | MR | Zbl

[122] L. N. Vaserstein, H. You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR

[123] N. A. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl

[124] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl

[125] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104:1 (2000), 201–250 | MR | Zbl

[126] N. A. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Zapiski POMI, 373 (2009), 48–72 | MR

[127] N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{Ep}(n,R)$”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl

[128] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR

[129] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg Univ., ser. 1, 41:1 (2008), 5–8 | DOI | MR | Zbl

[130] N. A. Vavilov, A. V. Stepanov, “Overgroups of semi-simple groups”, Vestnik Samara State Univ., Ser. Nat. Sci., 2008, no. 3, 51–95 (in Russian) | MR | Zbl

[131] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., ser. 1, 43:1 (2010), 12–17 | MR | Zbl

[132] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci., 188:5 (2012), 490–550 | DOI | MR

[133] N. A. Vavilov, Z. Zhang, Subnormal subgroups of Chevalley groups. I. Cases $\mathrm E_6$ and $\mathrm E_7$, Preprint, 2015

[134] T. Vorst, “Polynomial extensions and excision $\mathrm K_1$”, Math. Ann., 244 (1979), 193–204 | DOI | MR | Zbl

[135] M. Wendt, “$\mathbb A^1$-homotopy of Chevalley groups”, J. $K$-Theory, 5:2 (2010), 245–287 | MR | Zbl

[136] M. Wendt, “On homotopy invariance for homology of rank two groups”, J. Pure Appl. Algebra, 216 (2012), 2291–2301 | DOI | MR | Zbl

[137] H. You, “On the solution to a question of D. G. James”, J. Northeast Normal Univ., 1982, no. 2, 39–44 (Chinese) | MR | Zbl

[138] H. You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR

[139] H. You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra, 216 (2012), 1040–1051 | DOI | MR | Zbl

[140] Z. Zhang, Lower $K$-theory of unitary groups, Doktorarbeit, Univ. Belfast, 2007, 67 pp.

[141] Z. Zhang, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 143:3 (2007), 607–619 | DOI | MR | Zbl

[142] Z. Zhang, “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214 (2010), 622–628 | DOI | MR | Zbl

[143] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic groups”, J. reine angew. Math., 427 (1992), 51–105 | MR | Zbl

[144] D. L. Costa, G. E. Keller, “On the normal suggroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351 (1999), 5051–5088 | DOI | MR | Zbl