@article{ZNSL_2016_443_a12,
author = {R. Hazrat and N. Vavilov and Z. Zhang},
title = {The commutators of classical groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {151--221},
year = {2016},
volume = {443},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a12/}
}
R. Hazrat; N. Vavilov; Z. Zhang. The commutators of classical groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 151-221. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a12/
[1] E. Abe, “Whitehead groups of Chevalley groups over polynomial rings”, Comm. Algebra, 11:12 (1983), 1271–1308 | DOI | MR
[2] E. Abe, “Chevalley groups over commutative rings”, Radical Theory (Sendai, 1988), Uchida Rokakuho, Tokyo, 1989, 1–23 | MR
[3] E. Abe, “Normal subgroups of Chevalley groups over commutative rings”, Contemp. Math., 83 (1989), 1–17 | DOI | MR | Zbl
[4] M. Akhavan-Malayeri, “Writing certain commutators as products of cubes in free groups”, J. Pure Appl. Algebra, 177:1 (2003), 1–4 | DOI | MR | Zbl
[5] M. Akhavan-Malayeri, “Writing commutators of commutators as products of cubes in groups”, Comm. Algebra, 37 (2009), 2142–2144 | DOI | MR | Zbl
[6] H. Apte, A. Stepanov, “Local-global principle for congruence subgroups of Chevalley groups”, Central European J. Math., 12:6 (2014), 801–812 | MR | Zbl
[7] A. Bak, The stable structure of quadratic modules, Thesis, Columbia University, 1969
[8] A. Bak, $K$-Theory of Forms, Annals of Mathematics Studies, 98, Princeton University Press, Princeton, 1981 | MR | Zbl
[9] A. Bak, “Subgroups of the general linear group normalized by relative elementary groups”, Lecture Notes in Math., 967, Springer, Berlin, 1982, 1–22 | DOI | MR
[10] A. Bak, “Non-abelian $\mathrm K$-theory: The nilpotent class of $\mathrm K_1$ and general stability”, $K$-Theory, 4 (1991), 363–397 | DOI | MR | Zbl
[11] A. Bak, R. Basu, R. A. Rao, “Local-Global Principle for Transvection Groups”, Proc. Amer. Math. Soc., 138:4 (2010), 1191–1204 | DOI | MR | Zbl
[12] A. Bak, R. Hazrat, N. A. Vavilov, “Localization-completion strikes again: relative $\mathrm K_1$ is nilpotent by abelian”, J. Pure Appl. Algebra, 213 (2009), 1075–1085 | DOI | MR | Zbl
[13] A. Bak, A. Stepanov, “Dimension theory and nonstable $\mathrm K$-theory for net groups”, Rend. Sem. Mat. Univ. Padova, 106 (2001), 207–253 | MR | Zbl
[14] A. Bak, N. A. Vavilov, “Normality for elementary subgroup functors”, Math. Proc. Cambridge Phil. Soc., 118:1 (1995), 35–47 | DOI | MR | Zbl
[15] A. Bak, N. A. Vavilov, “Structure of hyperbolic unitary groups. I. Elementary subgroups”, Algebra Colloq., 7:2 (2000), 159–196 | DOI | MR | Zbl
[16] H. Bass, “$\mathrm K$-theory and stable algebra”, Inst. Hautes Études Sci. Publ. Math., 22 (1964), 5–60 | DOI | MR
[17] H. Bass, J. Milnor, J.-P. Serre, “Solution of the congruence subgroup problem for $\mathrm{SL}_n$ $(n\ge3)$ and $\mathrm{Sp}_{2n}$ $(n\ge2)$”, Inst. Hautes Études Sci. Publ. Math., 33 (1967), 59–133 | DOI | MR
[18] H. Bass, “Unitary algebraic $K$-theory”, Lecture Notes Math., 343, 1973, 57–265 | DOI | MR | Zbl
[19] H. Bass,, Algebraic K-theory, Benjamin, New York, 1968 | MR | Zbl
[20] R. Basu, Topics in Classical Algebraic K-Theory, Ph. D. Thesis, TIFR, 2006, 70 pp.
[21] R. Basu, Local-global principle for general quadratic and general hermitian groups and the nilpotence of $\mathrm{KH}_1$, Preprint, arXiv: 1412.3631v1
[22] R. Basu, R. A. Rao, R. Khanna, “On Quillen's local global principle”, Commutative algebra and algebraic geometry, Contemp. Math., 390, Amer. Math. Soc., Providence, RI, 2005, 17–30 | DOI | MR | Zbl
[23] Z. Borevich, N. A. Vavilov, “The distribution of subgroups in the full linear group over a commutative ring”, Proc. Steklov Institute Math., 3 (1985), 27–46
[24] P. Chattopadhya, R. A. Rao, Excision and elementary symplectic action, 2012, 14 pp.
[25] R. K. Dennis, L. N. Vaserstein, “On a question of M. Newman on the number of commutators”, J. Algebra, 118 (1988), 150–161 | DOI | MR | Zbl
[26] R. K. Dennis, L. N. Vaserstein, “Commutators in linear groups”, $\mathrm K$-Theory, 2 (1989), 761–767 | DOI | MR | Zbl
[27] E. Ellers, N. Gordeev, “On the conjectures of J. Thompson and O. Ore”, Trans. Amer. Math. Soc., 350 (1998), 3657–3671 | DOI | MR | Zbl
[28] D. Estes, J. Ohm, “Stable range in commutative rings”, J. Algebra,, 7:3 (1967), 343–362 | DOI | MR | Zbl
[29] S. C. Geller, C. A. Weibel, “$\mathrm K_2$ measures excision for $\mathrm K_1$”, Proc. Amer. Math. Soc., 80:1 (1980), 1–9 | MR | Zbl
[30] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$”, J. reine angew. Math., 342 (1983), 12–34 | MR | Zbl
[31] S. C. Geller, C. A. Weibel, “Subroups of elementary and Steinberg groups of congruence level $I^2$”, J. Pure Appl. Algebra, 35 (1985), 123–132 | DOI | MR | Zbl
[32] S. C. Geller, C. A. Weibel, “$\mathrm K_1(A,B,I)$, II”, $K$-Theory, 2:6 (1989), 753–760 | DOI | MR | Zbl
[33] V. N. Gerasimov, “The group of units of the free product of rings”, Math. Sbornik, 134(176):1 (1987), 42–65 | MR | Zbl
[34] R. M. Guralnick, G. Malle, “Products of conjugacy classes and fixed point spaces”, J. Amer. Math. Soc., 25:1 (2012), 77–121 | DOI | MR | Zbl
[35] G. Habdank, A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups, Dissertation, Universität Bielefeld, 1987, 71 pp.
[36] G. Habdank, “A classification of subgroups of $\Lambda$-quadratic groups normalized by relative elementary subgroups”, Adv. Math., 110:2 (1995), 191–233 | DOI | MR | Zbl
[37] A. J. Hahn, O. T. O'Meara, The classical groups and K-theory, Springer, Berlin et al., 1989 | MR | Zbl
[38] R. Hazrat, “Dimension theory and non-stable $\mathrm K_1$ of quadratic module”, $\mathrm K$-Theory, 27 (2002), 293–327 | DOI | MR
[39] R. Hazrat, V. Petrov, N. Vavilov, “Relative subgroups in Chevalley groups”, J. $\mathrm K$-Theory, 5 (2010), 603–618 | DOI | MR | Zbl
[40] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, “The yoga of commutators”, J. Math. Sci. (N.Y.), 179:6 (2011), 662–678 | DOI | MR | Zbl
[41] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, “Commutators width in Chevalley groups”, Note di Matematica, 33:1 (2013), 139–170 | MR | Zbl
[42] R. Hazrat, A. Stepanov, N. Vavilov, Z. Zhang, Multiple commutator formula. II, 2012
[43] R. Hazrat, N. Vavilov, “$\mathrm K_1$ of Chevalley groups are nilpotent”, J. Pure Appl. Algebra, 179 (2003), 99–116 | DOI | MR | Zbl
[44] R. Hazrat, N. Vavilov, “Bak's work on $\mathrm K$-theory of rings (with an appendix by Max Karoubi)”, J. K-Theory, 4:1 (2009), 1–65 | DOI | MR | Zbl
[45] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in unitary groups, and applications”, J. Algebra, 343 (2011), 107–137 | DOI | MR | Zbl
[46] R. Hazrat, N. Vavilov, Z. Zhang, “Relative commutator calculus in Chevalley groups, and applications”, J. Algebra, 385 (2013), 262–293 | DOI | MR | Zbl
[47] R. Hazrat, N. Vavilov, Z. Zhang, Multiple commutator formulas for unitary groups, Israel J. Math., 2016 (to appear) , 33 pp.
[48] R. Hazrat, N. Vavilov, Z. Zhang, “Generation of relative commutator subgroups in Chevalley groups”, Proc. Edinburgh Math. Soc., 59:2 (2016), 393–410 | DOI | Zbl
[49] R. Hazrat, Z. Zhang, “Generalized commutator formula”, Comm. Algebra, 39:4 (2011), 1441–1454 | DOI | MR | Zbl
[50] R. Hazrat, Z. Zhang, “Multiple commutator formula”, Israel J. Math., 195 (2013), 481–505 | DOI | MR | Zbl
[51] D. A. Jackson, “Basic commutator in weights six and seven as relators”, Comm. Algebra, 36 (2008), 2905–2909 | DOI | MR | Zbl
[52] D. A. Jackson, A. M. Gaglione, D. Spellman, “Basic commutator as relators”, J. Group Theory, 5 (2001), 351–363 | MR
[53] D. A. Jackson, A. M. Gaglione, D. Spellman, “Weight five basic commutator as relators”, Contemp. Math., 511 (2010), 39–81 | DOI | MR | Zbl
[54] W. van der Kallen, “Another presentation for Steinberg groups”, Indag. Math., 39:4 (1977), 304–312 | MR
[55] W. vander Kallen, “$\mathrm{SL}_3(\mathbb C[x])$ does not have bounded word length”, Lecture Notes Math., 966, 1982, 357–361 | DOI | MR
[56] W. van der Kallen, “A module structure on certain orbit sets of unimodular rows”, J. Pure Appl. Algebra, 57:3 (1989), 281–316 | DOI | MR | Zbl
[57] W. van der Kallen, B. Magurn, L. Vaserstein, “Absolute stable rank and Witt cancellation for non-commutative rings”, Invent. Math., 91 (1988), 525–542 | DOI | MR | Zbl
[58] L.-C. Kappe, R. F. Morse, “On commutators in groups”, Groups St. Andrews 2005, v. 2, C.U.P., 2007, 531–558 | DOI | MR | Zbl
[59] S. Khlebutin, Elementary subgroups of linear groups over rings, Ph. D. Thesis, Moscow State Univ., 1987 (in Russian)
[60] M.-A. Knus, Quadratic and hermitian forms over rings, Springer Verlag, Berlin et al., 1991 | MR | Zbl
[61] V. I. Kopeiko, “The stabilization of symplectic groups over a polynomial ring”, Math. U.S.S.R. Sbornik, 34:5 (1978), 655–669 | DOI | MR | Zbl
[62] N. Kumar, R. A. Rao, Quillen–Suslin theory for a structure theorem for the elementary symplectic group, Preprint, 2012, 15 pp. | MR
[63] Tsit-Yuen Lam, Serre's problem on projective modules, Springer Verlag, Berlin et al., 2006 | MR
[64] M. Larsen, A. Shalev, “Word maps and Waring type problems”, J. Amer. Math. Soc., 22 (2009), 437–466 | DOI | MR | Zbl
[65] M. Larsen, A. Shalev, Pham Huu Tiep, “The Waring problem for finite simple groups”, Ann. Math., 174 (2011), 1885–1950 | DOI | MR | Zbl
[66] A. V. Lavrenov, “The unitary Steinberg group is centrally closed”, Algebra i Analiz, 24:5 (2012), 783–794 | DOI | MR | Zbl
[67] F. Li, “The structure of symplectic group over arbitrary commutative rings”, Acta Math. Sinica, 3:3 (1987), 247–255 | DOI | MR | Zbl
[68] F. Li, “The structure of orthogonal groups over arbitrary commutative rings”, Chinese Ann. Math. Ser. B, 10:3 (1989), 341–350 | MR | Zbl
[69] F. Li, M. Liu, “Generalized sandwich theorem”, $\mathrm K$-Theory, 1 (1987), 171–184 | DOI | MR
[70] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “The Ore conjecture”, J. Europ. Math. Soc., 12 (2010), 939–1008 | DOI | MR | Zbl
[71] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Commutators in finite quasisimple groups”, Bull. London Math. Soc., 43 (2011), 1079–1092 | DOI | MR | Zbl
[72] M. Liebeck, E. A. O'Brien, A. Shalev, Pham Huu Tiep, “Products of squares in finite simple groups”, Proc. Amer. Math. Soc., 43:6 (2012), 1079–1092 | MR
[73] A. Yu. Luzgarev, “Overgroups of $E(F_4,R)$ in $G(E_6,R)$”, Algebra i Analiz, 20:6 (2008), 148–185 | MR | Zbl
[74] A. Yu. Luzgarev, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups are perfect”, St. Petersburg Math. J., 23:5 (2012), 881–890 | DOI | MR
[75] A. W. Mason, “A note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, J. London Math. Soc., 11 (1974), 509–512 | MR
[76] A. W. Mason, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators. II”, J. reine angew. Math., 322 (1981), 118–135 | MR | Zbl
[77] A. W. Mason, “A further note on subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Arch. Math., 37:5 (1981), 401–405 | DOI | MR | Zbl
[78] A. W. Mason, W. W. Stothers, “On subgroups of $\mathrm{GL}(n,A)$ which are generated by commutators”, Invent. Math., 23 (1974), 327–346 | DOI | MR | Zbl
[79] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[80] J. Milnor, “Algebraic $K$-theory and quadratic forms”, Invent. Math., 9 (1970), 318–344 | DOI | MR | Zbl
[81] J. Milnor, Introduction to algebraic $K$-theory, Princeton Univ. Press, Princeton, N.J., 1971 | MR | Zbl
[82] C. Moore, “Group extensions of $p$-adic and adelic linear groups”, Publ. Math. Inst. Hautes Études Sci., 35 (1968), 157–222 | MR
[83] D. W. Morris, “Bounded generation of $\mathrm{SL}(n,A)$ (after D. Carter, G. Keller, and E. Paige)”, New York J. Math., 13 (2007), 383–421 | MR | Zbl
[84] V. A. Petrov, “Overgroups of unitary groups”, $K$-Theory, 29 (2003), 147–174 | DOI | MR | Zbl
[85] V. A. Petrov, “Odd unitary groups”, J. Math. Sci., 130:3 (2003), 4752–4766 | DOI | MR
[86] V. A. Petrov, Overgroups of classical groups, Doktorarbeit, Univ. St.-Petersburg, 2005, 129 pp. (in Russian)
[87] V. A. Petrov, A. K. Stavrova, “Elementary subgroups of isotropic reductive groups”, Algebra i Analiz, 20:4 (2008), 160–188 | MR | Zbl
[88] D. Quillen, “Projective modules over polynomial rings”, Invent. Math., 36 (1976), 166-172 | DOI | MR
[89] D. Quillen, “Higher algebraic $K$-theory. I”, Lecture Notes in Math., 341, Springer, Berlin, 1973, 85–147 | DOI | MR
[90] J. Rosenberg, Algebraic $K$-Theory and its Applications, Springer-Verlag, New York, 1994 | MR | Zbl
[91] Sh. Rosset, “The higher lower central series”, Israel J. Math., 73:3 (1991), 257–279 | DOI | MR | Zbl
[92] A. Sivatski, A. Stepanov, “On the word length of commutators in $\mathrm{GL}_n(R)$”, $\mathrm K$-Theory, 17 (1999), 295–302 | DOI | MR | Zbl
[93] A. Shalev, “Commutators, words, conjugacy classes and character methods”, Turk. J. Math., 31 (2007), 131–148 | MR | Zbl
[94] A. Shalev, “Word maps, conjugacy classes, and a noncommutative Waring-type theorem”, Ann. Math., 170:3 (2009), 1383–1416 | DOI | MR | Zbl
[95] A. Smolensky, B. Sury, N. A. Vavilov, “Gauss decomposition for Chevalley groups revisited”, Intern. J. Group Theory, 1:1 (2012), 3–16 | MR | Zbl
[96] A. Stavrova, “Homotopy invariance of non-stable $\mathrm K_1$-functors”, J. K-Theory, 13 (2014), 199–248 | DOI | MR | Zbl
[97] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93:4 (1971), 965–1004 | DOI | MR | Zbl
[98] A. V. Stepanov, “Structure of Chevalley groups over rings via universal localization”, J. Algebra, 450 (2016), 522–548 | DOI | MR | Zbl
[99] A. V. Stepanov, N. A. Vavilov, “Decomposition of transvections: a theme with variations”, $\mathrm K$-Theory, 19 (2000), 109–153 | DOI | MR | Zbl
[100] A. V. Stepanov, N. A. Vavilov, “On the length of commutators in Chevalley groups”, Israel J. Math., 185 (2011), 253–276 | DOI | MR | Zbl
[101] A. V. Stepanov, N. A. Vavilov, H. You, Overgroups of semi-simple subgroups: localisation approach, Preprint, 2012
[102] A. Stepanov, “Nonabelian K-theory for Chevalley groups over rings”, J. Math. Sci. (New York), 209:4 (2015), 645–656 | DOI | Zbl
[103] R. Steinberg, “Générateurs, rélations et revêtements des groupes algébriques”, Colloque Théorie des Groupes Algébriques, Bruxelles, 1962, 113–127 | MR | Zbl
[104] R. Steinberg, Lectures on Chevalley groups, Yale University, 1967 | MR
[105] A. A. Suslin, “The structure of the special linear group over polynomial rings”, Math. USSR Izv., 11:2 (1977), 221–238 | DOI | MR | Zbl
[106] A. A. Suslin, V. I. Kopeiko, “Quadratic modules and orthogonal groups over polynomial rings”, J. Sov. Math., 20:6 (1982), 2665–2691 | DOI | MR | Zbl
[107] K. Suzuki, “Normality of the elementary subgroups of twisted Chevalley groups over commutative rings”, J. Algebra, 175:3 (1995), 526–536 | DOI | MR | Zbl
[108] R. G. Swan, “Excision in algebraic $\mathrm K$-theory”, J. Pure Appl. Algebra, 1:3 (1971), 221–252 | DOI | MR | Zbl
[109] G. Taddei, Schémas de Chevalley–Demazure, fonctions représentatives et théorème de normalité, Thèse, Univ. de Genève, 1985
[110] G. Taddei, “Normalité des groupes élémentaire dans les groupes de Chevalley sur un anneau”, Contemp. Math., 55:2 (1986), 693–710 | DOI | MR | Zbl
[111] G. Tang, “Hermitian groups and $K$-theory”, $K$-Theory, 13:3 (1998), 209–267 | DOI | MR | Zbl
[112] J. Tits, “Systèmes générateurs de groupes de congruences”, C. R. Acad. Sci. Paris, Sér. A, 283 (1976), 693–695 | MR | Zbl
[113] M. S. Tulenbaev, “The Steinberg group of a polynomial ring”, Math. U.S.S.R. Sb., 45:1 (1983), 139–154 | DOI | MR | Zbl
[114] M. S. Tulenbaev, “The Schur multiplier of the group of elementary matrices of finite order”, J. Sov. Math., 17:4 (1981), 2062–2067 | DOI | MR | Zbl
[115] L. N. Vaserstein, “On the normal subgroups of the $\mathrm{GL}_n$ of a ring”, Lecture Notes Math., 854, 1981, 454–465 | MR
[116] L. N. Vaserstein, “The subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 99 (1986), 425–431 | DOI | MR | Zbl
[117] L. N. Vaserstein, “On normal subgroups of Chevalley groups over commutative rings”, Tôhoku Math. J., 36:5 (1986), 219–230 | DOI | MR
[118] L. N. Vaserstein, “Normal subgroups of orthogonal groups over commutative rings”, Amer. J. Math., 110:5 (1988), 955–973 | DOI | MR | Zbl
[119] L. N. Vaserstein, “Normal subgroups of symplectic groups over rings”, $K$-Theory, 2:5 (1989), 647–673 | DOI | MR | Zbl
[120] L. N. Vaserstein, “The subnormal structure of general linear groups over rings”, Math. Proc. Cambridge Phil. Soc., 108:2 (1990), 219–229 | DOI | MR | Zbl
[121] L. N. Vaserstein, A. A. Suslin, “Serre's problem on projective modules over polynomial rings, and algebraic $K$-theory”, Math. USSR Izv., 10:5 (1976), 937–1001 | DOI | MR | Zbl
[122] L. N. Vaserstein, H. You, “Normal subgroups of classical groups over rings”, J. Pure Appl. Algebra, 105:1 (1995), 93–106 | DOI | MR
[123] N. A. Vavilov, “A note on the subnormal structure of general linear groups”, Math. Proc. Cambridge Phil. Soc., 107:2 (1990), 193–196 | DOI | MR | Zbl
[124] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Proc. Conf. Non-associative algebras and related topics (Hiroshima, 1990), World Sci. Publ., London et al., 1991, 219–335 | MR | Zbl
[125] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104:1 (2000), 201–250 | MR | Zbl
[126] N. A. Vavilov, A. Luzgarev, A. Stepanov, “Calculations in exceptional groups over rings”, Zapiski POMI, 373 (2009), 48–72 | MR
[127] N. A. Vavilov, V. A. Petrov, “Overgroups of $\mathrm{Ep}(n,R)$”, St. Petersburg Math. J., 15:4 (2004), 515–543 | DOI | MR | Zbl
[128] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Applicandae Math., 45 (1996), 73–115 | DOI | MR
[129] N. A. Vavilov, A. V. Stepanov, “Standard commutator formula”, Vestnik St. Petersburg Univ., ser. 1, 41:1 (2008), 5–8 | DOI | MR | Zbl
[130] N. A. Vavilov, A. V. Stepanov, “Overgroups of semi-simple groups”, Vestnik Samara State Univ., Ser. Nat. Sci., 2008, no. 3, 51–95 (in Russian) | MR | Zbl
[131] N. A. Vavilov, A. V. Stepanov, “Standard commutator formulae, revisited”, Vestnik St. Petersburg State Univ., ser. 1, 43:1 (2010), 12–17 | MR | Zbl
[132] N. A. Vavilov, A. V. Stepanov, “Linear groups over general rings. I. Generalities”, J. Math. Sci., 188:5 (2012), 490–550 | DOI | MR
[133] N. A. Vavilov, Z. Zhang, Subnormal subgroups of Chevalley groups. I. Cases $\mathrm E_6$ and $\mathrm E_7$, Preprint, 2015
[134] T. Vorst, “Polynomial extensions and excision $\mathrm K_1$”, Math. Ann., 244 (1979), 193–204 | DOI | MR | Zbl
[135] M. Wendt, “$\mathbb A^1$-homotopy of Chevalley groups”, J. $K$-Theory, 5:2 (2010), 245–287 | MR | Zbl
[136] M. Wendt, “On homotopy invariance for homology of rank two groups”, J. Pure Appl. Algebra, 216 (2012), 2291–2301 | DOI | MR | Zbl
[137] H. You, “On the solution to a question of D. G. James”, J. Northeast Normal Univ., 1982, no. 2, 39–44 (Chinese) | MR | Zbl
[138] H. You, “On subgroups of Chevalley groups which are generated by commutators”, J. Northeast Normal Univ., 1992, no. 2, 9–13 | MR
[139] H. You, “Subgroups of classical groups normalised by relative elementary groups”, J. Pure Appl. Algebra, 216 (2012), 1040–1051 | DOI | MR | Zbl
[140] Z. Zhang, Lower $K$-theory of unitary groups, Doktorarbeit, Univ. Belfast, 2007, 67 pp.
[141] Z. Zhang, “Stable sandwich classification theorem for classical-like groups”, Math. Proc. Cambridge Phil. Soc., 143:3 (2007), 607–619 | DOI | MR | Zbl
[142] Z. Zhang, “Subnormal structure of non-stable unitary groups over rings”, J. Pure Appl. Algebra, 214 (2010), 622–628 | DOI | MR | Zbl
[143] D. L. Costa, G. E. Keller, “Radix redux: normal subgroups of symplectic groups”, J. reine angew. Math., 427 (1992), 51–105 | MR | Zbl
[144] D. L. Costa, G. E. Keller, “On the normal suggroups of $\mathrm G_2(A)$”, Trans. Amer. Math. Soc., 351 (1999), 5051–5088 | DOI | MR | Zbl