Chow ring of generic maximal orthogonal Grassmannians
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 147-150

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the Chow ring of the maximal orthogonal Grassmannian corresponding to a versal torsor, and in particular show that it has no torsion as an abelian group.
@article{ZNSL_2016_443_a11,
     author = {V. A. Petrov},
     title = {Chow ring of generic maximal orthogonal {Grassmannians}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {147--150},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a11/}
}
TY  - JOUR
AU  - V. A. Petrov
TI  - Chow ring of generic maximal orthogonal Grassmannians
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 147
EP  - 150
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a11/
LA  - en
ID  - ZNSL_2016_443_a11
ER  - 
%0 Journal Article
%A V. A. Petrov
%T Chow ring of generic maximal orthogonal Grassmannians
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 147-150
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a11/
%G en
%F ZNSL_2016_443_a11
V. A. Petrov. Chow ring of generic maximal orthogonal Grassmannians. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 147-150. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a11/