Chow ring of generic maximal orthogonal Grassmannians
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 147-150
Cet article a éte moissonné depuis la source Math-Net.Ru
We compute the Chow ring of the maximal orthogonal Grassmannian corresponding to a versal torsor, and in particular show that it has no torsion as an abelian group.
@article{ZNSL_2016_443_a11,
author = {V. A. Petrov},
title = {Chow ring of generic maximal orthogonal {Grassmannians}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {147--150},
year = {2016},
volume = {443},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a11/}
}
V. A. Petrov. Chow ring of generic maximal orthogonal Grassmannians. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 147-150. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a11/
[1] D. Edidin, W. Graham, “Characteristic classes and quadric bundles”, Duke Math. J., 72 (1995), 277–299 | DOI | MR
[2] R. Elman, N. Karpenko, A. Merkurjev, The algebraic and geometric theory of quadratic forms, AMS Colloquium Publ., 56, 2008 | MR | Zbl
[3] V. Petrov, N. Semenov, Rost motives, affine varieties, and classifying spaces, Preprint, arXiv: 1506.07788
[4] B. Totaro, “The Chow ring of a classifying space”, Algebraic K-Theory (Seattle, WA, 1997), Proc. Sympos. Pure Math., 67, 1997, 249–281 | DOI | MR
[5] A. Vishik, “On the Chow groups of quadratic Grassmannians”, Documenta Math., 10 (2005), 111–130 | MR | Zbl