On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 133-146 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Let $R$ be a semi-local Dedekind domain and let $K$ be the field of fractions of $R$. Let $G$ be a reductive semisimple simply connected $R$-group scheme such that every semisimple normal $R$-subgroup scheme of $G$ contains a split $R$-torus $\mathbb G_{m,R}$. We prove that the kernel of the map $$ H^1_{\unicode{x00E9}\unicode{x74}}(R,G)\to H^1_{\unicode{x00E9}\unicode{x74}}(K,G) $$ induced by the inclusion of $R$ into $K$, is trivial. This result partially extends the Nisnevich theorem [10, Thm.4.2].
@article{ZNSL_2016_443_a10,
     author = {I. A. Panin and A. K. Stavrova},
     title = {On the {Grothendieck{\textendash}Serre} conjecture concerning principal $G$-bundles over semi-local {Dedekind} domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--146},
     year = {2016},
     volume = {443},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/}
}
TY  - JOUR
AU  - I. A. Panin
AU  - A. K. Stavrova
TI  - On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 133
EP  - 146
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/
LA  - en
ID  - ZNSL_2016_443_a10
ER  - 
%0 Journal Article
%A I. A. Panin
%A A. K. Stavrova
%T On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 133-146
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/
%G en
%F ZNSL_2016_443_a10
I. A. Panin; A. K. Stavrova. On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 133-146. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/

[1] A. Borel, J. Tits, “Groupes réductifs”, Publ. Math. I.H.É.S., 27 (1965), 55–151 | DOI | MR

[2] J.-L. Colliot-Thélène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: Applications”, J. Algebra, 106 (1987), 148–205 | DOI | MR | Zbl

[3] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, New Mathematical Monographs, 17, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[4] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics, 151–153, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR

[5] Ph. Gille, “Le problème de Kneser–Tits”, Sém. Bourbaki, 983 (2007), 1–39 | MR

[6] R. Fedorov, I. Panin, A proof of Grothendieck–Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field, Preprint, 2013, arXiv: ; Publ. IHES, 122:1 (2015), 169–193 1211.2678v2 | DOI | MR | Zbl

[7] A. Grothendieck, “Torsion homologique et sections rationnelles”, Anneaux de Chow et applications, Séminaire Claude Chevalley, v. 3, 1958, Exp. 5, 29 pp.

[8] A. Grothendieck, “Le groupe de Brauer. II. Théorie cohomologique”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87 | MR

[9] L.-F. Moser, Rational triviale Torseure und die Serre-Grothendiecksche Vermutung, Diplomarbeit, 2008 http://www.mathematik.uni-muenchen.de/~lfmoser/da.pdf

[10] Y. Nisnevich, “Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings”, C. R. Acad. Sc. Paris, Série I, 299:1 (1984), 5–8 | MR | Zbl

[11] I. Panin, Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, Preprint No. 559, , 2015 https://www.math.uni-bielefeld.de/lag/

[12] I. Panin, On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: II, Preprint, arXiv: 0905.1423v3

[13] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl

[14] V. Petrov, A. Stavrova, “Elementary subgroups of isotropic reductive groups”, St. Petersburg Math. J., 20 (2009), 625–644 | DOI | MR | Zbl

[15] J.-P. Serre, “Espaces fibrés algébriques”, Anneaux de Chow et applications, Séminaire Claude Chevalley, v. 3, 1958, Exp. 1, 37 pp.

[16] A. Stavrova, “Homotopy invariance of non-stable $K_1$-functors”, J. K-Theory, 13 (2014), 199–248 | DOI | MR | Zbl

[17] A. Stavrova, “Non-stable $K_1$-functors of multiloop groups”, Canad. J. Math., 68 (2016), 150–178 | DOI | MR | Zbl

[18] A. A. Suslin, “The structure of the special linear group over rings of polynomials”, Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977), 235–252, 477 | MR | Zbl