@article{ZNSL_2016_443_a10,
author = {I. A. Panin and A. K. Stavrova},
title = {On the {Grothendieck{\textendash}Serre} conjecture concerning principal $G$-bundles over semi-local {Dedekind} domains},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {133--146},
year = {2016},
volume = {443},
language = {en},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/}
}
TY - JOUR AU - I. A. Panin AU - A. K. Stavrova TI - On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains JO - Zapiski Nauchnykh Seminarov POMI PY - 2016 SP - 133 EP - 146 VL - 443 UR - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/ LA - en ID - ZNSL_2016_443_a10 ER -
%0 Journal Article %A I. A. Panin %A A. K. Stavrova %T On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains %J Zapiski Nauchnykh Seminarov POMI %D 2016 %P 133-146 %V 443 %U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/ %G en %F ZNSL_2016_443_a10
I. A. Panin; A. K. Stavrova. On the Grothendieck–Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 133-146. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/
[1] A. Borel, J. Tits, “Groupes réductifs”, Publ. Math. I.H.É.S., 27 (1965), 55–151 | DOI | MR
[2] J.-L. Colliot-Thélène, J.-J. Sansuc, “Principal homogeneous spaces under flasque tori: Applications”, J. Algebra, 106 (1987), 148–205 | DOI | MR | Zbl
[3] B. Conrad, O. Gabber, G. Prasad, Pseudo-reductive groups, New Mathematical Monographs, 17, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl
[4] M. Demazure, A. Grothendieck, Schémas en groupes, Lecture Notes in Mathematics, 151–153, Springer-Verlag, Berlin–Heidelberg–New York, 1970 | MR
[5] Ph. Gille, “Le problème de Kneser–Tits”, Sém. Bourbaki, 983 (2007), 1–39 | MR
[6] R. Fedorov, I. Panin, A proof of Grothendieck–Serre conjecture on principal bundles over a semilocal regular ring containing an infinite field, Preprint, 2013, arXiv: ; Publ. IHES, 122:1 (2015), 169–193 1211.2678v2 | DOI | MR | Zbl
[7] A. Grothendieck, “Torsion homologique et sections rationnelles”, Anneaux de Chow et applications, Séminaire Claude Chevalley, v. 3, 1958, Exp. 5, 29 pp.
[8] A. Grothendieck, “Le groupe de Brauer. II. Théorie cohomologique”, Dix exposés sur la cohomologie des schémas, Adv. Stud. Pure Math., 3, North-Holland, Amsterdam, 1968, 67–87 | MR
[9] L.-F. Moser, Rational triviale Torseure und die Serre-Grothendiecksche Vermutung, Diplomarbeit, 2008 http://www.mathematik.uni-muenchen.de/~lfmoser/da.pdf
[10] Y. Nisnevich, “Rationally trivial principal homogeneous spaces and arithmetic of reductive group schemes over Dedekind rings”, C. R. Acad. Sc. Paris, Série I, 299:1 (1984), 5–8 | MR | Zbl
[11] I. Panin, Proof of Grothendieck–Serre conjecture on principal bundles over regular local rings containing a finite field, Preprint No. 559, , 2015 https://www.math.uni-bielefeld.de/lag/
[12] I. Panin, On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: II, Preprint, arXiv: 0905.1423v3
[13] I. Panin, A. Stavrova, N. Vavilov, “On Grothendieck–Serre's conjecture concerning principal $G$-bundles over reductive group schemes: I”, Compos. Math., 151:3 (2015), 535–567 | DOI | MR | Zbl
[14] V. Petrov, A. Stavrova, “Elementary subgroups of isotropic reductive groups”, St. Petersburg Math. J., 20 (2009), 625–644 | DOI | MR | Zbl
[15] J.-P. Serre, “Espaces fibrés algébriques”, Anneaux de Chow et applications, Séminaire Claude Chevalley, v. 3, 1958, Exp. 1, 37 pp.
[16] A. Stavrova, “Homotopy invariance of non-stable $K_1$-functors”, J. K-Theory, 13 (2014), 199–248 | DOI | MR | Zbl
[17] A. Stavrova, “Non-stable $K_1$-functors of multiloop groups”, Canad. J. Math., 68 (2016), 150–178 | DOI | MR | Zbl
[18] A. A. Suslin, “The structure of the special linear group over rings of polynomials”, Izv. Akad. Nauk SSSR Ser. Mat., 41:2 (1977), 235–252, 477 | MR | Zbl