On the Grothendieck--Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 133-146

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be a semi-local Dedekind domain and let $K$ be the field of fractions of $R$. Let $G$ be a reductive semisimple simply connected $R$-group scheme such that every semisimple normal $R$-subgroup scheme of $G$ contains a split $R$-torus $\mathbb G_{m,R}$. We prove that the kernel of the map $$ H^1_{\unicode{x00E9}\unicode{x74}}(R,G)\to H^1_{\unicode{x00E9}\unicode{x74}}(K,G) $$ induced by the inclusion of $R$ into $K$, is trivial. This result partially extends the Nisnevich theorem [10, Thm.4.2].
@article{ZNSL_2016_443_a10,
     author = {I. A. Panin and A. K. Stavrova},
     title = {On the {Grothendieck--Serre} conjecture concerning principal $G$-bundles over semi-local {Dedekind} domains},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {133--146},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/}
}
TY  - JOUR
AU  - I. A. Panin
AU  - A. K. Stavrova
TI  - On the Grothendieck--Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 133
EP  - 146
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/
LA  - en
ID  - ZNSL_2016_443_a10
ER  - 
%0 Journal Article
%A I. A. Panin
%A A. K. Stavrova
%T On the Grothendieck--Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 133-146
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/
%G en
%F ZNSL_2016_443_a10
I. A. Panin; A. K. Stavrova. On the Grothendieck--Serre conjecture concerning principal $G$-bundles over semi-local Dedekind domains. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 133-146. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a10/