Cubic forms on adjoint representations of exceptional groups
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 9-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We construct cubic forms on adjoint representation of the Chevalley group of type $\mathsf E_7$, whose partial derivatives are linear combinations of equations on the orbit of the highest weight vector. In order to describe the forms we introduce new combinatorial notions related to maximal squares in root systems of exceptional types.
@article{ZNSL_2016_443_a1,
     author = {M. M. Atamanova and A. Yu. Luzgarev},
     title = {Cubic forms on adjoint representations of exceptional groups},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {9--23},
     year = {2016},
     volume = {443},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a1/}
}
TY  - JOUR
AU  - M. M. Atamanova
AU  - A. Yu. Luzgarev
TI  - Cubic forms on adjoint representations of exceptional groups
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 9
EP  - 23
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a1/
LA  - ru
ID  - ZNSL_2016_443_a1
ER  - 
%0 Journal Article
%A M. M. Atamanova
%A A. Yu. Luzgarev
%T Cubic forms on adjoint representations of exceptional groups
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 9-23
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a1/
%G ru
%F ZNSL_2016_443_a1
M. M. Atamanova; A. Yu. Luzgarev. Cubic forms on adjoint representations of exceptional groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 9-23. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a1/

[1] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR

[2] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR | Zbl

[3] N. A. Vavilov, “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40 | MR | Zbl

[4] N. A. Vavilov, “Esche nemnogo isklyuchitelnoi numerologii”, Zap. nauchn. semin. POMI, 375, 2010, 22–31 | Zbl

[5] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR | Zbl

[6] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v $27$-mernom predstavlenii”, Zap nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl

[7] A. Yu. Luzgarev, “Ne zavisyaschie ot kharakteristiki invarianty chetvertoi stepeni dlya $G(\mathrm E_7,R)$”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 1: Matematika. Mekhanika. Astronomiya, 2013, no. 1, 43–50 | MR

[8] M. Aschbacher, “The $27$-dimensional module for $\mathrm E_6$. I”, Invent. Math., 89:1 (1987), 159–195 ; “II”, J. London Math. Soc., 37 (1988), 275–293 ; “III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 ; “IV”, J. Algebra, 191 (1991), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR

[9] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl

[10] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm E_7$. I. A four form for $\mathrm E_7$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl

[11] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl

[12] A. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, arXiv: 1401.0849v1[math.AG]

[13] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl

[14] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl

[15] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl

[16] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl

[17] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl