@article{ZNSL_2016_443_a1,
author = {M. M. Atamanova and A. Yu. Luzgarev},
title = {Cubic forms on adjoint representations of exceptional groups},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {9--23},
year = {2016},
volume = {443},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a1/}
}
M. M. Atamanova; A. Yu. Luzgarev. Cubic forms on adjoint representations of exceptional groups. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 9-23. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a1/
[1] N. Burbaki, Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR
[2] N. A. Vavilov, “Kak uvidet znaki strukturnykh konstant?”, Algebra i analiz, 19:4 (2007), 34–68 | MR | Zbl
[3] N. A. Vavilov, “Numerologiya kvadratnykh uravnenii”, Algebra i analiz, 20:5 (2008), 9–40 | MR | Zbl
[4] N. A. Vavilov, “Esche nemnogo isklyuchitelnoi numerologii”, Zap. nauchn. semin. POMI, 375, 2010, 22–31 | Zbl
[5] N. A. Vavilov, A. Yu. Luzgarev, “Normalizator gruppy Shevalle tipa $\mathrm E_6$”, Algebra i analiz, 19:5 (2007), 37–64 | MR | Zbl
[6] N. A. Vavilov, A. Yu. Luzgarev, I. M. Pevzner, “Gruppa Shevalle tipa $\mathrm E_6$ v $27$-mernom predstavlenii”, Zap nauchn. semin. POMI, 338, 2006, 5–68 | MR | Zbl
[7] A. Yu. Luzgarev, “Ne zavisyaschie ot kharakteristiki invarianty chetvertoi stepeni dlya $G(\mathrm E_7,R)$”, Vestnik Sankt-Peterburgskogo universiteta. Seriya 1: Matematika. Mekhanika. Astronomiya, 2013, no. 1, 43–50 | MR
[8] M. Aschbacher, “The $27$-dimensional module for $\mathrm E_6$. I”, Invent. Math., 89:1 (1987), 159–195 ; “II”, J. London Math. Soc., 37 (1988), 275–293 ; “III”, Trans. Amer. Math. Soc., 321 (1990), 45–84 ; “IV”, J. Algebra, 191 (1991), 23–39 | DOI | MR | Zbl | DOI | MR | Zbl | MR | Zbl | MR
[9] M. Aschbacher, “Some multilinear forms with large isometry groups”, Geom. Dedicata, 25:1–3 (1988), 417–465 | MR | Zbl
[10] B. N. Cooperstein, “The fifty-six-dimensional module for $\mathrm E_7$. I. A four form for $\mathrm E_7$”, J. Algebra, 173:2 (1995), 361–389 | DOI | MR | Zbl
[11] W. Lichtenstein, “A system of quadrics describing the orbit of the highest weight vector”, Proc. Amer. Math. Soc., 84:4 (1982), 605–608 | DOI | MR | Zbl
[12] A. Luzgarev, Equations determining the orbit of the highest weight vector in the adjoint representation, arXiv: 1401.0849v1[math.AG]
[13] H. Matsumoto, “Sur les sous-groupes arithmétiques des groupes semi-simples déployés”, Ann. Sci. École Norm. Sup. (4), 2 (1969), 1–62 | MR | Zbl
[14] M. R. Stein, “Generators, relations and coverings of Chevalley groups over commutative rings”, Amer. J. Math., 93 (1971), 965–1004 | DOI | MR | Zbl
[15] N. A. Vavilov, “Structure of Chevalley groups over commutative rings”, Nonassociative algebras and related topics (Hiroshima, 1990), World Sci. Publ., River Edge, NJ, 1991, 219–335 | MR | Zbl
[16] N. A. Vavilov, “A third look at weight diagrams”, Rend. Sem. Mat. Univ. Padova, 104 (2000), 201–250 | MR | Zbl
[17] N. A. Vavilov, E. B. Plotkin, “Chevalley groups over commutative rings. I. Elementary calculations”, Acta Appl. Math., 45:1 (1996), 73–113 | DOI | MR | Zbl