On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8
Voir la notice de l'article provenant de la source Math-Net.Ru
The zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety is computed. This group is identified with the group of oriented zero-cycles on the variety. The proof heavily exploits properties of strictly homotopy invariant sheaves.
@article{ZNSL_2016_443_a0,
author = {A. S. Ananyevskiy},
title = {On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--8},
publisher = {mathdoc},
volume = {443},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/}
}
A. S. Ananyevskiy. On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/