On the zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

The zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety is computed. This group is identified with the group of oriented zero-cycles on the variety. The proof heavily exploits properties of strictly homotopy invariant sheaves.
@article{ZNSL_2016_443_a0,
     author = {A. S. Ananyevskiy},
     title = {On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--8},
     year = {2016},
     volume = {443},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/}
}
TY  - JOUR
AU  - A. S. Ananyevskiy
TI  - On the zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 8
VL  - 443
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/
LA  - ru
ID  - ZNSL_2016_443_a0
ER  - 
%0 Journal Article
%A A. S. Ananyevskiy
%T On the zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-8
%V 443
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/
%G ru
%F ZNSL_2016_443_a0
A. S. Ananyevskiy. On the zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/

[1] A. Asok, Ch. Haesemeyer, The $0$-th stable $\mathbb A^1$-homotopy sheaf and quadratic zero cycles, arXiv: 1108.3854v1

[2] J. P. Jouanolou, “Une suite exacte de Mayer–Vietoris en $K$–théorie algébrique”, Lecture Notes in Math., 341, Springer-Verlag, 1973, 293–316 | DOI | MR

[3] P. Hu, “On the Picard group of the stable $\mathbb A^1$-homotopy category”, Topology, 44:3 (2005), 609–640 | DOI | MR | Zbl

[4] F. Morel, “An introduction to $\mathbb A^1$-homotopy theory”, Contemporary developments in algebraic K-theory, ICTP Lecture Notes, 15, Abdus Salam International Center for Theoretical Physics, Trieste, 2004, 357–441 | MR

[5] F. Morel, $\mathbb A^1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012 | DOI | MR

[6] F. Morel, V. Voevodsky, “$\mathbb A^1$-homotopy theory of schemes”, Publ. Math. IHES, 90 (1999), 45–143 | DOI | MR | Zbl

[7] V. Voevodsky, “$\mathbb A^1$-homotopy theory”, Doc. Math., Extra I (1998), 579–604 | MR | Zbl