@article{ZNSL_2016_443_a0,
author = {A. S. Ananyevskiy},
title = {On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {5--8},
year = {2016},
volume = {443},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/}
}
A. S. Ananyevskiy. On the zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/
[1] A. Asok, Ch. Haesemeyer, The $0$-th stable $\mathbb A^1$-homotopy sheaf and quadratic zero cycles, arXiv: 1108.3854v1
[2] J. P. Jouanolou, “Une suite exacte de Mayer–Vietoris en $K$–théorie algébrique”, Lecture Notes in Math., 341, Springer-Verlag, 1973, 293–316 | DOI | MR
[3] P. Hu, “On the Picard group of the stable $\mathbb A^1$-homotopy category”, Topology, 44:3 (2005), 609–640 | DOI | MR | Zbl
[4] F. Morel, “An introduction to $\mathbb A^1$-homotopy theory”, Contemporary developments in algebraic K-theory, ICTP Lecture Notes, 15, Abdus Salam International Center for Theoretical Physics, Trieste, 2004, 357–441 | MR
[5] F. Morel, $\mathbb A^1$-algebraic topology over a field, Lecture Notes in Math., 2052, Springer, Heidelberg, 2012 | DOI | MR
[6] F. Morel, V. Voevodsky, “$\mathbb A^1$-homotopy theory of schemes”, Publ. Math. IHES, 90 (1999), 45–143 | DOI | MR | Zbl
[7] V. Voevodsky, “$\mathbb A^1$-homotopy theory”, Doc. Math., Extra I (1998), 579–604 | MR | Zbl