On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety
Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8

Voir la notice de l'article provenant de la source Math-Net.Ru

The zeroth stable $\mathbb A^1$-homotopy group of a smooth projective variety is computed. This group is identified with the group of oriented zero-cycles on the variety. The proof heavily exploits properties of strictly homotopy invariant sheaves.
@article{ZNSL_2016_443_a0,
     author = {A. S. Ananyevskiy},
     title = {On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--8},
     publisher = {mathdoc},
     volume = {443},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/}
}
TY  - JOUR
AU  - A. S. Ananyevskiy
TI  - On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2016
SP  - 5
EP  - 8
VL  - 443
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/
LA  - ru
ID  - ZNSL_2016_443_a0
ER  - 
%0 Journal Article
%A A. S. Ananyevskiy
%T On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety
%J Zapiski Nauchnykh Seminarov POMI
%D 2016
%P 5-8
%V 443
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/
%G ru
%F ZNSL_2016_443_a0
A. S. Ananyevskiy. On the zeroth stable $\mathbb A^1$-homotopy group of a~smooth projective variety. Zapiski Nauchnykh Seminarov POMI, Problems in the theory of representations of algebras and groups. Part 29, Tome 443 (2016), pp. 5-8. http://geodesic.mathdoc.fr/item/ZNSL_2016_443_a0/