On interval of faultless work for a~system of two independent alternating renewal processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 143-165

Voir la notice de l'article provenant de la source Math-Net.Ru

A system of two independent alternating renewal processes with states $0$ and $1$, and an initial shift $t_0$ of one process relative to another one is considered. An integral equation with respect to an expectation of time $T$ (the first time when both processes have state $0$) is derived. For deriving a method of so called minimal chains of overlapping $1$-intervals is used. Such a chain generates some breaking semi-Markov process of intervals composing the interval $(0,T)$. A solution of the integral equation is obtained for the case when lengths of $1$-intervals have exponential distributions and lengths of $0$-intervals have distributions of common view. For more general distributions of $1$-intervals the Monte Carlo method is applied when both processes are simulated numerically by computer. Histograms for estimates of the expectation of $T$ as a function of $t_0$ are demonstrated.
@article{ZNSL_2015_442_a9,
     author = {B. P. Harlamov and O. V. Prourzin},
     title = {On interval of faultless work for a~system of two independent alternating renewal processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--165},
     publisher = {mathdoc},
     volume = {442},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/}
}
TY  - JOUR
AU  - B. P. Harlamov
AU  - O. V. Prourzin
TI  - On interval of faultless work for a~system of two independent alternating renewal processes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 143
EP  - 165
VL  - 442
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/
LA  - ru
ID  - ZNSL_2015_442_a9
ER  - 
%0 Journal Article
%A B. P. Harlamov
%A O. V. Prourzin
%T On interval of faultless work for a~system of two independent alternating renewal processes
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 143-165
%V 442
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/
%G ru
%F ZNSL_2015_442_a9
B. P. Harlamov; O. V. Prourzin. On interval of faultless work for a~system of two independent alternating renewal processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 143-165. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/