On interval of faultless work for a system of two independent alternating renewal processes
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 143-165
Cet article a éte moissonné depuis la source Math-Net.Ru
A system of two independent alternating renewal processes with states $0$ and $1$, and an initial shift $t_0$ of one process relative to another one is considered. An integral equation with respect to an expectation of time $T$ (the first time when both processes have state $0$) is derived. For deriving a method of so called minimal chains of overlapping $1$-intervals is used. Such a chain generates some breaking semi-Markov process of intervals composing the interval $(0,T)$. A solution of the integral equation is obtained for the case when lengths of $1$-intervals have exponential distributions and lengths of $0$-intervals have distributions of common view. For more general distributions of $1$-intervals the Monte Carlo method is applied when both processes are simulated numerically by computer. Histograms for estimates of the expectation of $T$ as a function of $t_0$ are demonstrated.
@article{ZNSL_2015_442_a9,
author = {B. P. Harlamov and O. V. Prourzin},
title = {On interval of faultless work for a~system of two independent alternating renewal processes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {143--165},
year = {2015},
volume = {442},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/}
}
TY - JOUR AU - B. P. Harlamov AU - O. V. Prourzin TI - On interval of faultless work for a system of two independent alternating renewal processes JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 143 EP - 165 VL - 442 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/ LA - ru ID - ZNSL_2015_442_a9 ER -
B. P. Harlamov; O. V. Prourzin. On interval of faultless work for a system of two independent alternating renewal processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 143-165. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/
[1] I. B. Gertsbakh, Kh. B. Kordonskii, Modeli otkazov, M., 1966
[2] I. I. Gikhman, A. V. Skorokhod, Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973 | MR
[3] D. Koks, V. Smit, Teoriya vosstanovleniya, Sov. radio, M., 1967 | MR
[4] O. N. Kukushkin, “Model ekspluatatsionnoi nadëzhnosti razvetvlënnykh tekhnologicheskikh linii”, Sistemnye tekhnologii, 2013, no. 4(87), 174–179