On interval of faultless work for a~system of two independent alternating renewal processes
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 143-165
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			A system of two independent alternating renewal processes with states $0$ and $1$, and an initial shift $t_0$ of one process relative to another one is considered. An integral equation with respect to an expectation of time $T$ (the first time when both processes have state $0$) is derived.  For deriving a method of so called minimal chains of overlapping $1$-intervals is used. Such a chain generates some breaking semi-Markov process of intervals composing the interval $(0,T)$. A solution of the integral equation is obtained for the case when lengths of $1$-intervals have  exponential  distributions and lengths of $0$-intervals have distributions of common view. For more general distributions of $1$-intervals the Monte Carlo method is applied when both processes are simulated numerically by computer. Histograms for estimates of the expectation of $T$ as a function of $t_0$ are demonstrated.
			
            
            
            
          
        
      @article{ZNSL_2015_442_a9,
     author = {B. P. Harlamov and O. V. Prourzin},
     title = {On interval of faultless work for a~system of two independent alternating renewal processes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {143--165},
     publisher = {mathdoc},
     volume = {442},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/}
}
                      
                      
                    TY - JOUR AU - B. P. Harlamov AU - O. V. Prourzin TI - On interval of faultless work for a~system of two independent alternating renewal processes JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 143 EP - 165 VL - 442 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/ LA - ru ID - ZNSL_2015_442_a9 ER -
%0 Journal Article %A B. P. Harlamov %A O. V. Prourzin %T On interval of faultless work for a~system of two independent alternating renewal processes %J Zapiski Nauchnykh Seminarov POMI %D 2015 %P 143-165 %V 442 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/ %G ru %F ZNSL_2015_442_a9
B. P. Harlamov; O. V. Prourzin. On interval of faultless work for a~system of two independent alternating renewal processes. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 143-165. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a9/