Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 122-132
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider pseudo-poissonian process of the following simple type: it is a poissonian subordinator for a sequence of i.i.d. random variables with a finite variance. Next we consider sums of i.i.d. copies of such pseudo-poissonian process. For a family of the distributions of these random sums we prove the tightness (relative compactness) in the Skorokhod space. Under conditions of the Central Limit Theorem for vectors we obtain a weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.
@article{ZNSL_2015_442_a7,
author = {O. V. Rusakov},
title = {Tightness of the sums of independent identically distributed pseudo-poissonian processes in the {Skorokhod} space},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {122--132},
year = {2015},
volume = {442},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/}
}
TY - JOUR AU - O. V. Rusakov TI - Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space JO - Zapiski Nauchnykh Seminarov POMI PY - 2015 SP - 122 EP - 132 VL - 442 UR - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/ LA - ru ID - ZNSL_2015_442_a7 ER -
O. V. Rusakov. Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 122-132. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/