Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space
Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 122-132 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

We consider pseudo-poissonian process of the following simple type: it is a poissonian subordinator for a sequence of i.i.d. random variables with a finite variance. Next we consider sums of i.i.d. copies of such pseudo-poissonian process. For a family of the distributions of these random sums we prove the tightness (relative compactness) in the Skorokhod space. Under conditions of the Central Limit Theorem for vectors we obtain a weak convergence in the functional Skorokhod space of the examined sums to the Ornstein–Uhlenbeck process.
@article{ZNSL_2015_442_a7,
     author = {O. V. Rusakov},
     title = {Tightness of the sums of independent identically distributed pseudo-poissonian processes in the {Skorokhod} space},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {122--132},
     year = {2015},
     volume = {442},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/}
}
TY  - JOUR
AU  - O. V. Rusakov
TI  - Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 2015
SP  - 122
EP  - 132
VL  - 442
UR  - http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/
LA  - ru
ID  - ZNSL_2015_442_a7
ER  - 
%0 Journal Article
%A O. V. Rusakov
%T Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space
%J Zapiski Nauchnykh Seminarov POMI
%D 2015
%P 122-132
%V 442
%U http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/
%G ru
%F ZNSL_2015_442_a7
O. V. Rusakov. Tightness of the sums of independent identically distributed pseudo-poissonian processes in the Skorokhod space. Zapiski Nauchnykh Seminarov POMI, Probability and statistics. Part 23, Tome 442 (2015), pp. 122-132. http://geodesic.mathdoc.fr/item/ZNSL_2015_442_a7/

[1] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[2] U. Feller, Vvedenie v teoriyu veroyatnostei i ee primeneniya, v. 2, Mir, M., 1984

[3] O. Vasićek, “An equilibrium characterization of the term structure”, J. Financial Economics, 5 (1977), 177–188 | DOI